Chứng tỏ rằng a = 2 + 2 mũ 2 + 2 mũ 3 + chấm chấm chấm + 2 mũ 100 chia hết cho 6

319 lượt xem

Chứng minh biểu thức chia hết cho 1 số

Bài tập Chứng minh biểu thức chia hết cho một số Toán lớp 6 được GiaiToan hướng dẫn giúp các học sinh luyện tập về dạng bài tính nhanh. Hi vọng tài liệu này giúp các em học sinh tự củng cố kiến thức, luyện tập và nâng cao cách giải bài tập Toán lớp 6. Mời các em cùng các thầy cô tham khảo.

Chứng minh A = 5 + 5^2 + 5^3 + . . . + 5^99 + 5^100 chia hết cho 6

Lời giải chi tiết

A = 5 + 52 + 53 + . . . + 599 + 5100

A = (5 + 52) + (53 + 54) + . . . + (599 + 5100)

A = 5(1 + 5) + 53(1 + 5) + … + 599(5 + 1)9999

A = 5 . 6 + 53 . 6 + … + 599 . 6

A = 6 . (5 + 533 + …. + 599) chia hết cho 6

Chứng minh A = 5 + 5^2 + 5^3 + . . . + 5^99 chia hết cho 31

Lời giải chi tiết

A = 5 + 52 + 53 + . . . + 599 + 599

A = (5 + 52 + 53) + (54 + 55 + 565555) + . . . + (597 + 598 + 599)

A = 5.(1 + 5 + 52) + 54(54 + 55 + 565555) + … + 597(54 + 55 + 565555) 9797

A = 5 . 31 + 54 . 31 + … + 597 . 31

A = 31 . (5 + 54 + … + 597) chia hết cho 31

Tính chất chia hết của một tổng

- Tính chất: Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó.

a ⋮ m và b ⋮ m ⇒ (a + b) ⋮ m

a ⋮ m; b ⋮ m; c ⋮ m ⇒ (a + b + c) ⋮ m

Chú ý: Nếu chỉ có một số hạng của tổng không chia hết cho một số, còn các số hạng khác đều chia hết cho số đó thì tổng không chia hết cho số đó.

a ⋮ m và b ⋮ ̸ m ⇒ (a + b) ⋮ ̸ m

a ⋮ ̸ m; b ⋮ m; c ⋮ m ⇒ (a + b + c) ⋮ ̸ m

Dấu hiệu chia hết cho 31

Dấu hiệu chia hết cho 31: ta lấy số hàng đơn vị nhân 3 rồi lấy kết quả trừ với số tạo bởi các số liền trước, nếu hiệu chia hết cho 31 thì nó chia hết cho 31

Tài liệu tham khảo:

-------------------------------------------------

Ngoài dạng bài tập Chứng minh biểu thức Toán 6, các em học sinh có thể tham khảo thêm các dạng toán khác được GiaiToan đăng tải. Với phiếu bài tập này sẽ giúp các em rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các em học tập tốt!

C = 2 + 2^2 + 2^3 +...+ 2^99 + 2^100

=( 2 + 2^2 + 2^3 + 2^4 + 2^5) + (2^6 + 2^7 + 2^8 + 2^9 + 2^10) +...+ (2^95 + 2^96 + 2^97 + 2^98 + 2^99 + 2^100)

=2.( 1 + 2^1 + 2^2 + 2^3 + 2^4) + 2^6.(1 + 2^1 + 2^2 + 2^3 + 2^4) +...+ 2^96.(1 + 2^1 + 2^2 + 2^3 + 2^4)

=2.31 + 2^6.31 +...+ 2^96.31

=31.(2+ 2^6 +...+ 2^96) chia hết cho 31

=>C chia hết cho 31.

Khách

Hãy nhập câu hỏi của bạn vào đây

Dưới đây là một vài câu hỏi có thể liên quan tới câu hỏi mà bạn gửi lên. Có thể trong đó có câu trả lời mà bạn cần!

chứng minh rằng A=2 + mũ 2 +2 mũ 3+ 2 mũ 4 +...+2 mũ 99 + 2 mũ 100 chia hết cho 6