Neural stem cells from the brain can differentiate into which types of cell

  • Rao MS . Multipotent and restricted precursors in the central nervous system. Anat Rec 1999; 257: 137–148.

    CAS  Article  Google Scholar 

  • McConnell SK . Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 1995; 15: 761–768.

    CAS  Article  Google Scholar 

  • Altmann CR, Brivanlou AH . Neural patterning in the vertebrate embryo. Int Rev Cytol 2001; 203: 447–482.

    CAS  Article  Google Scholar 

  • Weinstein DC, Hemmati-Brivanlou A . Neural induction. Annu Rev Dev Biol 1999; 15: 411–433.

    CAS  Article  Google Scholar 

  • Wolpert L . Positional information and pattern formation in development. Dev Genet 1994; 15: 485–490.

    CAS  Article  Google Scholar 

  • Kobayashi D, Kobayashi M, Matsumoto K et al. Early subdivisions in the neural plate define distinct competence for inductive signals. Development 2001; 129: 83–93.

    Google Scholar 

  • Lumsden A, Krumlauf R . Patterning the vertebrate neuraxis. Science 1996; 274: 1109–1115.

    CAS  Article  Google Scholar 

  • Barres BA, Barde Y . Neuronal and glial cell biology. Curr Opin Neurobiol 2000; 10: 642–648.

    CAS  Article  Google Scholar 

  • Rao MS, Mayer-Proschel M . Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev Biol 1997; 188: 48–63.

    CAS  Article  Google Scholar 

  • Levison SW, Goldman JE . Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J Neurosci Res 1997; 48: 83–94.

    CAS  Article  Google Scholar 

  • Price J, Thurlow L . Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development 1988; 104: 173–182.

    Google Scholar 

  • Levison SW, Goldman JE . Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat brain. Neuron 1993; 10: 201–212.

    CAS  Article  Google Scholar 

  • Price J . Glial cell lineage and development. Curr Opin Neurobiol 1994; 4: 680–686.

    CAS  Article  Google Scholar 

  • Frisén J, Johansson CB, Lothian C et al. Central nervous system stem cells in the embryo and adult. Cell Mol Life Sci 1998; 54: 935–945.

    Article  Google Scholar 

  • Gage FH . Mammalian neural stem cells. Science 2000; 287: 1433–1438.

    CAS  Article  Google Scholar 

  • Gaiano N, Fishell G . Transplantation as a tool to study progenitors within the vertebrate nervous system. J Neurobiol 1999; 36: 152–161.

    Article  Google Scholar 

  • Kalyani AJ, Piper D, Mujtaba T, Lucero MT, Rao MS . Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture. J Neurosci 1998; 18: 7856–7868.

    CAS  Article  Google Scholar 

  • Temple S . The development of neural stem cells. Nature 2001; 414: 112–117.

    CAS  Article  Google Scholar 

  • Altman J, Das GD . Autoradiographic and histological studies of postnatal neurogenesis. J Comp Neurol 1966; 126: 337–390.

    CAS  Article  Google Scholar 

  • Bayer SA, Yackel JW, Puri PS . Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 1982; 216: 890–892.

    CAS  Article  Google Scholar 

  • Reynolds BA, Weiss S . Generation of neurons and astrocytes from isolated cells of the adult mammalian nervous system. Science 1992; 255: 1707–1710.

    CAS  Article  Google Scholar 

  • Lois C, Alvarez-Buylla A . Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 1993; 90: 2074–2077.

    CAS  Article  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4: 1313–1317.

    CAS  Article  Google Scholar 

  • Johansson CB, Momma S, Clarke DL et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999; 96: 25–34.

    CAS  Article  Google Scholar 

  • Doetsch F, Caille I, Lim DA et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999; 97: 703–716.

    CAS  Article  Google Scholar 

  • Rietze RL, Valcanis H, Brooker GF et al. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 2001; 412: 736–739.

    CAS  Article  Google Scholar 

  • Barres BA . A new role for glia: generation of neurons! Cell 1999; 97: 667–670.

    CAS  Article  Google Scholar 

  • Johe KK, Hazel TG, Muller T et al. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 1996; 10: 3129–3140.

    CAS  Article  Google Scholar 

  • Kuhn HG, Winkler J, Kempermann G et al. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 1997; 17: 5820–5829.

    CAS  Article  Google Scholar 

  • Zhang S, Ge B, Duncan ID . Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci USA 1999; 96: 4089–4094.

    CAS  Article  Google Scholar 

  • Shihabuddin LS, Horner PJ, Ray J et al. Adult spinal cord stem cells regenerate neurons after transplantation in the adult dentate gyrus. J Neurosci 2000; 20: 8727–8735.

    CAS  Article  Google Scholar 

  • Suhonen JO, Peterson DA, Ray J et al. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 1996; 383: 624–627.

    CAS  Article  Google Scholar 

  • Blau HM, Baltimore D . Differentiation requires continuous regulation. J Cell Biol 1991; 112: 781–783.

    CAS  Article  Google Scholar 

  • Terskikh AV, Easterday MC, Li L et al. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc Natl Acad Sci USA 2001; 98: 7934–7939.

    CAS  Article  Google Scholar 

  • Brazelton TR, Rossi FMV, Keshet GI et al. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000; 290: 1775–1779.

    CAS  Article  Google Scholar 

  • Mezey E, Chandross KJ, Harta G et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290: 1779–1782.

    CAS  Article  Google Scholar 

  • Bjornson CR, Rietze RL, Reynolds BA et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999; 283: 534–537.

    CAS  Article  Google Scholar 

  • Galli R, Borello U, Gritti A et al. Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 2000; 3: 986–991.

    CAS  Article  Google Scholar 

  • Clarke DL, Johansson CB, Wilbertz J et al. Generalized potential of adult neural stem cells. Science 2000; 288: 1660–1663.

    CAS  Article  Google Scholar 

  • What can neural stem cells differentiate into?

    Neural stem cells [NSCs] are a group of ectodermal progenitor cells, which can differentiate into committed neural sub-types, such as neurons, astrocytes, or oligodendrocytes.

    What type of stem cells are neural stem cells?

    Neural stem cells from the SGZ are called Type I cells and can generate proliferating IPCs, called Type 2 cells, similar to the type B cells of the SVZ. Intermediate progenitor cells give rise to neuroblasts [Type 3 cells] [Seri et al., 2004; Sugiyama et al., 2013].

    What are neural stem cells called?

    Neural stem cells [NSCs] are the stem cells of the nervous system. During development they give rise to the entire nervous system.

    Chủ Đề