Các phương pháp chứng minh trong toán học năm 2024

Quy nạp toán học là một phương pháp chứng minh toán học dùng để chứng minh một mệnh đề về bất kỳ tập hợp nào được xếp theo thứ tự. Thông thường nó được dùng để chứng minh mệnh đề áp dụng cho tập hợp tất cả các số tự nhiên.

Quy nạp toán học là một hình thức chứng minh trực tiếp, thường được thực hiện theo hai bước. Khi cố gắng để chứng minh một mệnh đề là đúng cho tập hợp các số tự nhiên, bước đầu tiên, được gọi là bước cơ sở, là chứng minh mệnh đề đưa ra là đúng với số tự nhiên đầu tiên. Bước thứ hai, được gọi là bước quy nạp, là chứng minh rằng, nếu mệnh đề được giả định là đúng cho bất kỳ số tự nhiên nào đó, thế thì nó cũng đúng cho số tự nhiên tiếp theo. Sau khi chứng minh hai bước này, các quy tắc suy luận khẳng định mệnh đề là đúng cho tất cả các số tự nhiên. Trong thuật ngữ phổ biến, sử dụng phương pháp nói trên được gọi là sử dụng nguyên lý quy nạp toán học.

Phương pháp này có thể được mở rộng để chứng minh các mệnh đề về các cấu trúc được thiết lập tổng quát hơn, chẳng hạn như cây; quá trình tổng quát này, được gọi là quy nạp cấu trúc, được sử dụng trong logic toán và khoa học máy tính. Quy nạp toán học theo nghĩa mở rộng này có quan hệ chặt chẽ với đệ quy. Quy nạp toán học, trong một số hình thức, là nền tảng của tất cả các phép chứng minh tính đúng đắn của các chương trình máy tính.

Mặc dù tên của nó là gần giống với lập luận quy nạp, quy nạp toán học không được nhầm lẫn như là một phương pháp của lập luận quy nạp. Quy nạp toán học là một quy tắc suy luận được sử dụng trong chứng minh. Trong toán học, chứng minh bao gồm những phép sử dụng quy nạp toán học là những ví dụ của suy diễn logic, và các lập luận quy nạp bị loại ra khỏi phép chứng minh.

Mô tả[sửa | sửa mã nguồn]

Hình thức đơn giản và phổ biến nhất của phương pháp quy nạp toán học suy luận rằng một mệnh đề liên quan đến một số tự nhiên n cũng đúng với tất cả các giá trị của n. Cách chứng minh bao gồm hai bước sau:

  1. Bước cơ sở: chứng minh rằng mệnh đề đúng với số tự nhiên đầu tiên n. Thông thường, n = 0 hoặc n = 1, hiếm khi có n = -1 [mặc dù không phải là một số tự nhiên, phần mở rộng của các số tự nhiên đến -1 vẫn áp dụng được]
  2. Bước quy nạp: chứng minh rằng, nếu mệnh đề được dùng cho một số số tự nhiên n, sau đó cũng đúng với n + 1. Giả thiết ở bước quy nạp rằng mệnh đề đúng với các số n được gọi là giả thiết quy nạp. Để thực hiện bước quy nạp, phải giả sử giả thiết quy nạp là đúng và sau đó sử dụng giả thiết này để chứng minh mệnh đề với n + 1.

Việc n = 0 hay n = 1 phụ thuộc vào định nghĩa của số tự nhiên. Nếu 0 được coi là một số tự nhiên, bước cơ sở được đưa ra bởi n = 0. Nếu, mặt khác, 1 được xem như là số tự nhiên đầu tiên, bước hợp cơ sở được đưa ra với n = 1.

Ví dụ[sửa | sửa mã nguồn]

Quy nạp toán học có thể được sử dụng để chứng minh rằng mệnh đề P[n] sau, đúng với tất cả số tự nhiên n.

P[n] đưa ra một công thức cho tổng các số tự nhiên nhỏ hơn hoặc bằng số n. Cách chứng minh P[n] đúng với mỗi số tự nhiên n như sau.

Tài liệu gồm 702 hướng dẫn các kỹ thuật và phương pháp chứng minh bất đẳng thức [Đại số 10 chương 4] kèm các ví dụ và bài tập bất đẳng thức có lời giải chi tiết.

Các phương pháp chứng minh bất đẳng thức được đề cập trong tài liệu: Chương I. MỘT SỐ PHƯƠNG PHÁP GIẢI TOÁN + Chủ đề 1. Kỹ thuật biến đổi tương đương + Chủ đề 2. Sử dụng các tính chất của tỉ số, tính chất giá trị tuyệt đối và tính chất của tam thức bậc hai trong chứng minh bất đẳng thức 1. Sử dụng tính chất của tỉ số 2. Sử dụng tính chất giá trị tuyệt đối 3. Sử dụng tính chất tam thức bậc hai. + Chủ đề 3. Chứng minh bất đẳng thức bằng phương pháp phản chứng + Chủ đề 4. Chứng minh các bất đẳng thức về tổng, tích của dãy số – Phương pháp quy nạp + Chủ đề 5 Kỹ thuật sử dụng bất đẳng thức CAUCHY 1. Kỹ thuật chọn điểm rơi trong đánh giá từ trung bình cộng sang trung bình nhân 2. Kỹ thuật chọn điểm rơi trong đánh giá từ trung bình nhân sang trung bình cộng. 3. Kỹ thuật ghép cặp trong bất đẳng thức Cauchy 4. Kỹ thuật thêm bớt 5. Kỹ thuật Cauchy ngược dấu 6. Kỹ thuật đổi biến số + Chủ đề 6 Kỹ thuật sử dụng bất đẳng thức BUNHIACOPXKI 1. Kỹ thuật chọn điểm rơi 2. Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng cơ bản 3. Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng phân thức 4. Kỹ thuật thêm bớt 5. Kỹ thuật đổi biến trong bất đẳng thức Bunhiacopxki [ads] Chương II. MỘT SỐ KỸ THUẬT GIẢI TOÁN ĐẶC SẮC + Chủ đề 7. Ứng dụng nguyên lý DIRICHLET trong chứng minh bất đẳng thức + Chủ đề 8. Phương pháp hệ số bất định trong chứng minh bất đẳng thức + Chủ đề 9. Ứng dụng một hệ quả của bất đẳng thức SCHUR + Chủ đề 10. Ứng dụng của đạo hàm trong chứng minh bất đẳng thức và bài toán tìm cực trị 1. Dồn biến nhờ vận dụng kỹ thuật sử dụng các bất đẳng thức kinh điển 2. Dồn biến nhờ kết hợp với kỹ thuật đổi biến số 3. Dồn biến nhờ kết hợp với kỹ thuật sắp thứ tự các biến 4. Phương pháp tiếp tuyến 5. Khảo sát hàm nhiều biến số 6. Kết hợp với việc sử dụng Bổ đề 7. Vận dụng kỹ thuật dồn biến cổ điển Chương III. TUYỂN CHỌN MỘT SỐ BÀI TOÁN BẤT ĐẲNG THỨC + Chủ đề 11. Một số bất đẳng thức hay và khó + Chủ đề 12. Một số bất đẳng thức trong các đề thi học sinh giỏi, thi TSĐH và tuyển sinh lớp 10 chuyên toán

  • Bất Đẳng Thức Và Cực Trị

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

BÀI VIẾT LIÊN QUAN

Chủ Đề