Cách vẽ hàm số biến thiên

Khảo sát sự biến thiên và vẽ đồ thị hàm số

I. Sơ đồ khảo sát hàm số [tổng quát]

1. Tập xác định.

Tìm tập xác định của hàm số

2. Sự biến thiên.

- Xét chiều biến thiên của hàm số

+ Tính đạo hàm y'

+ Tìm các điểm tại đó y' bằng 0 hoặc không xác định

+ Xét dấu đạo hàm y' và suy ra chiều biến thiên của hàm số y

- Tìm cực trị

- Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm tiệm cận [nếu có]

- Lập bảng biến thiên [Ghi các kết quả tìm được vào bảng biến thiên].

3. Đồ thị.

Dựa vào bảng biến thiên,các yếu tố xác định ở trên để vẽ đồ thị. Có thể khảo sát thêm các yếu tố sau để có đồ thị chính xác hơn:

Tương giao với các trục.

Tính đối xứng [nếu có].

Điểm đặc biệt [nếu cần].

Điểm uốn.

Định nghĩa :Điểm U [\[x_0;f\left[x_0\right]\]] được gọi là điểm uốn của đồ thị hàm số \[y=f\left[x\right]\] nếu tồn tại một khoảng [a; b] chứa điểm \[x_0\] sao cho trên một trong hai khoảng [\[a;x_0\]] và [\[x_0;b\]] tiếp tuyến của đồ thị tại điểm U nằm phía trên đồ thị còn trên khoảng kia tiếp tuyến nằm phía dưới đồ thị.

Mệnh đề [Cách tìm điểm uốn]:Nếu hàm số \[y=f\left[x\right]\] có đạo hàm cấp hai trên một khoảng chứa \[x_0\], \[f"\left[x_0\right]\]\[f"\left[x\right]\] đổi dấu khi qua điểm \[x_0\] thì U [\[x_0;f\left[x_0\right]\]] là một điểm uốn của đồ thị hàm số \[y=f\left[x\right]\].

II. Các Dạng Đồ Thị Khảo Sát

III. Ví dụ minh họa

Ví dụ 1 : Cho hàm số\[y=x^3+3x^2-4\]

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số

b. Biện luận theo tham số m số nghiệm của phương trình\[\left[x+2\right]^2=\frac{m}{\left|x-1\right|}\]

Bài giải :

a. Tập xác định : D = R

Sự biến thiên :

* Chiều biến thiên : Ta có\[y'=3x^2+6x\]

\[y'=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\end{array}\right.\]

\[y'< 0\Leftrightarrow-2< x< 0\]

\[y'>0\Leftrightarrow\left[\begin{array}{nghiempt}x< -2\\x>0\end{array}\right.\]

Suy ra hàm số đồng biên trên mỗi khoảng\[\left[-\infty;-2\right]\]\[\left[0;+\infty\right]\]; Hàm nghịch biến trên\[\left[-2;0\right]\]

* Cực trị : Hàm số đạt cực đạitại\[x=-2,y_{CD}=0\]

đạt cực tiểu tại\[x=0,y_{CT}=-4\]

* Giới hạn :\[\lim\limits_{x\rightarrow+\infty}y=+\infty;\lim\limits_{x\rightarrow-\infty}y=-\infty\]

* Bảng biến thiên :

x y' y - 8 -2 0 + 8 + - + 0 0 0 -4 - 8 + 8

* Đồ thị : Đồ thị [C] của hàm số cắt trục hoành tại A[1;0]

b. Ta có\[\left[x+2\right]^2=\frac{m}{\left|x-\right|}\Leftrightarrow\left|x-1\right|\left[x^2+4x+4\right]=m,x\ne1\]

Xét hàm số \[f\left[x\right]=\left|x-1\right|\left[x^2+4x+4\right]=\begin{cases}x^3+3x^2-4;x>1\\-\left[x^3+3x^2-4\right];x< 1\end{cases}\]

Suy ra đồ thị hàm số\[y=f\left[x\right]\]gồm phần đồ thị [C] với x > 1 và đối xứng phần đồ thị [C] với x < 1 qua Ox

Dựa vào đồ thị suy ra :

* m < 0 phương trình vô nghiệm

* m = 0 phương trình có 1 nghiệm

* 0 < m < 4 phương trình có 4 nghiệm

* m = 4 phương trình có 3 nghiệm

* m > 4 phương trình có 2 nghiệm

Ví dụ 2 : Cho hàm số\[y=x^4-2x^2-1\]

a. Khảo sát sự biến thiên và vẽ đồ thị [C]

b. Tìm m để phương trình\[\left|x^4-2x^2-1\right|=2m\]có 6 nghiệm phân biệt

Bài giải :

a.Tập xác định : D = R

Ta có\[y'=4x\left[x^2-1\right]\Rightarrow y'=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\Rightarrow y=-1\\x=\pm1\Rightarrow y=-2\end{array}\right.\]

Giới hạn :\[\lim\limits_{x\rightarrow\pm\infty}y=+\infty\]

Bảng biến thiên

Hàm đồng biến trên\[\left[-1;0\right]\]\[\left[1;+\infty\right]\]; nghịch biến trên\[\left[-\infty;-1\right]\]\[\left[0;1\right]\]

Hàm số đạt cực đại tại\[x=0;y_{CD}=-1\]

Hàm số đạt cực tiểu tại\[x=\pm1;y_{ct}=-2\]

Đồ thị :

Do hàm số\[y=x^{ }-2x^2-1\]là hàm số chẵn nên [C] nhận Oy làm trục đối xứng

b. Số nghiệm củaphương trình đã cho là số giao điểm của 2 đồ thị\[\begin{cases}\left[C'\right]:y=\left|x^4-2x^2-1\right|\\\Delta:y=2m;\Delta\backslash\backslash Ox\end{cases}\]

Ta có đồ thị :

Dựa vào [C'], suy ra phương trình đã cho có 6 nghiệm phân biệt khi và chỉ khi :

\[1< 2m< 2\Leftrightarrow\frac{1}{2}< m< 1\]

Ví dụ 3 : Cho hàm số\[y=\frac{-x+1}{x-2}\]

a. Khảo sát sự biến thiên và vẽ đồ thị hàm số

b. Biện luận theo m số nghiệm của phương trình\[\left|\left|x\right|-1\right|=m\left|\left|x\right|-2\right|\]

Bài giải :

a. Tập xác định :\[D=R\backslash\left\{2\right\}\]

Sự biến thiên :

* Chiều biến thiên : Ta có\[y'=\frac{1}{\left[x-2\right]^2}>0;x\ne2\]suy ra hàm số đồng biến trêncác khoảng\[\left[-\infty;2\right]\]\[\left[2;+\infty\right]\]

* Giới hạn :\[\lim\limits_{x\rightarrow+\infty}y=\lim\limits_{x\rightarrow+\infty}\frac{-x+1}{x-2}=-1\]

\[\lim\limits_{x\rightarrow-\infty}y=\lim\limits_{x\rightarrow-\infty}\frac{-x+1}{x-2}=-1\]

\[\lim\limits_{x\rightarrow2^-}y=\lim\limits_{x\rightarrow2^-}\frac{-x+1}{x-2}=+\infty\]

\[\lim\limits_{x\rightarrow2^+}y=\lim\limits_{x\rightarrow2^+}\frac{-x+1}{x-2}=-\infty\]

* Tiệm cận : Đồ thị có đường tiệm cận ngang là\[y=-1\]; đường tiệm cận đứng là\[x=2\]

* Bảng biến thiên :

* Đồ thị :

Đồ thị hàm số cắt trục hoành tại [0;1]; cắt trục tung tại\[\left[0;-\frac{1}{2}\right]\]và nhận giao điểm I[2;-1] của hai tiệm cận làm tâm đối xứng

b. Ta có\[x=\pm2\]không là nghiệm của phương trình nên :

\[\left|\left|x\right|-1\right|=m\left|\left|x\right|-2\right|\Leftrightarrow m=\frac{\left|1-\left|x\right|\right|}{\left|\left|x\right|-1\right|}\]

Xét hàm số\[\frac{\left|1-\left|x\right|\right|}{\left|\left|x\right|-1\right|}=y\]có đồ thị [C]

Khi đó đồ thị\[\left[C_1\right]\]gồm :

- Phần bên trên trục hoành và bên phải trục tung của đồ thị [C]

- Phần ở phía dưới trục hoành, bên phải trục tung của đồ thị [C] lấy đối xứng qua trục hoành

- Phần bên trên trục hoành và bên trái trục tung của đồ thị [C]

- Phần ở phía dưới trục hoành, bên trái trục tung của đồ thị [C] lấy đối xứng qua trục hoành

Từ đồ thị ta có

* Với\[0< m< \frac{1}{2}\]\[m>\frac{1}{2}\]thì phương trình có 4 nghiệm riêng biệt

* Với m = 0 thì phương trình có 2 nghiệm phân biệt

* Với\[m=\frac{1}{2}\]thì phương trình có 3 nghiệm phân biệt

* Với m < 0 thì phương trình vô nghiệm

IV. Tài liệu đọc thêm:

Các bước khảo sát và vẽ đồ thị hàm số

Các dạng toán về khảo sát và vẽ đồ thị hàm số

Video liên quan

Chủ Đề