In số byte python

Một số lớp bộ sưu tập có thể thay đổi. Các phương thức cộng, trừ hoặc sắp xếp lại các thành viên của chúng tại chỗ và không trả về một mục cụ thể, không bao giờ trả về chính thể hiện của bộ sưu tập nhưng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

Một số hoạt động được hỗ trợ bởi một số loại đối tượng; . Hàm thứ hai được sử dụng ngầm khi một đối tượng được viết bởi hàm

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
34

Kiểm tra giá trị thực¶

Bất kỳ đối tượng nào cũng có thể được kiểm tra giá trị thực, để sử dụng trong điều kiện

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
35 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
36 hoặc dưới dạng toán hạng của phép toán Boolean bên dưới

Theo mặc định, một đối tượng được coi là đúng trừ khi lớp của nó định nghĩa phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
37 trả về
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 hoặc phương thức
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
39 trả về 0 khi được gọi với đối tượng. 1 Dưới đây là hầu hết các đối tượng tích hợp được coi là sai

  • constants defined to be false.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    38

  • số không của bất kỳ loại số nào.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    43,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    44,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    45,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    46

  • trình tự và bộ sưu tập trống.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    47,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    48,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    49,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    50,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    51,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    52

Các phép toán và hàm dựng sẵn có kết quả Boolean luôn trả về

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 nếu sai và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 nếu đúng, trừ khi có quy định khác. [Ngoại lệ quan trọng. các phép toán Boolean
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
57 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
58 luôn trả về một trong các toán hạng của chúng. ]

Phép toán Boolean —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
58,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
57,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
61¶

Đây là các phép toán Boolean, được sắp xếp theo mức độ ưu tiên tăng dần

Hoạt động

Kết quả

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
62

nếu x sai, thì y, ngược lại x

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
63

nếu x sai, thì x, ngược lại y

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
64

nếu x sai, thì

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56, ngược lại thì
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

[3]

ghi chú

  1. Đây là toán tử ngắn mạch, vì vậy nó chỉ đánh giá đối số thứ hai nếu đối số thứ nhất sai

  2. Đây là toán tử ngắn mạch, vì vậy nó chỉ đánh giá đối số thứ hai nếu đối số thứ nhất đúng

  3. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    61 có mức ưu tiên thấp hơn so với các toán tử không phải Boolean, do đó,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    68 được hiểu là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    69 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    70 là một lỗi cú pháp

So sánh¶

Có tám thao tác so sánh trong Python. Tất cả chúng đều có cùng mức độ ưu tiên [cao hơn so với các phép toán Boolean]. So sánh có thể được xâu chuỗi tùy ý;

This table summarizes the comparison operations

Hoạt động

Meaning

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74

strictly less than

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
75

nhỏ hơn hoặc bằng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
76

strictly greater than

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
77

greater than or equal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
78

equal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
79

not equal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
80

object identity

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
81

negated object identity

Objects of different types, except different numeric types, never compare equal. Toán tử

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
78 luôn được xác định nhưng đối với một số loại đối tượng [ví dụ: đối tượng lớp] tương đương với
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
80. The
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
75,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
76 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
77 operators are only defined where they make sense; for example, they raise a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88 exception when one of the arguments is a complex number

Non-identical instances of a class normally compare as non-equal unless the class defines the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
89 method

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object, unless the class defines enough of the methods

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
90,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
91,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
92, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
93 [in general,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
90 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
89 are sufficient, if you want the conventional meanings of the comparison operators]

The behavior of the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
80 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
81 operators cannot be customized; also they can be applied to any two objects and never raise an exception

Two more operations with the same syntactic priority,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
99, are supported by types that are iterable or implement the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
900 method.

Các loại số —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
903¶

Có ba loại số riêng biệt. số nguyên, số dấu phẩy động và số phức. Ngoài ra, Booleans là một kiểu con của số nguyên. Số nguyên có độ chính xác không giới hạn. Số dấu phẩy động thường được triển khai bằng cách sử dụng double trong C; . Số phức có phần thực và phần ảo, mỗi phần là một số dấu chấm động. Để trích xuất các phần này từ một số phức z, hãy sử dụng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
905 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
906. [Thư viện chuẩn bao gồm các loại số bổ sung
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
907, dành cho số hữu tỉ và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908, dành cho số dấu phẩy động với độ chính xác do người dùng xác định. ]

Numbers are created by numeric literals or as the result of built-in functions and operators. Các số nguyên không trang trí [bao gồm cả số hex, bát phân và nhị phân] mang lại số nguyên. Chữ số có chứa dấu thập phân hoặc dấu mũ mang lại số dấu phẩy động. Việc thêm

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
909 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
910 vào một chữ số sẽ tạo ra một số ảo [một số phức có phần thực bằng 0] mà bạn có thể thêm vào một số nguyên hoặc dấu phẩy động để có được một số phức có phần thực và phần ảo

Python hỗ trợ đầy đủ số học hỗn hợp. when a binary arithmetic operator has operands of different numeric types, the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point, which is narrower than complex. A comparison between numbers of different types behaves as though the exact values of those numbers were being compared. 2

Các hàm tạo

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
911,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
912 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
913 có thể được sử dụng để tạo các số thuộc một loại cụ thể

Tất cả các loại số [ngoại trừ phức tạp] đều hỗ trợ các phép toán sau [để biết mức độ ưu tiên của các phép toán, hãy xem Mức độ ưu tiên của toán tử ].

Hoạt động

Kết quả

ghi chú

tài liệu đầy đủ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
914

tổng của x và y

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
915

sự khác biệt của x và y

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
916

sản phẩm của x và y

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
917

quotient of x and y

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
918

thương số sàn của x và y

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
919

phần còn lại của

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
917

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
921

x negated

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
922

x unchanged

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
923

giá trị tuyệt đối hoặc độ lớn của x

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
924

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
925

x converted to integer

[3][6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
911

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
927

x được chuyển đổi thành dấu phẩy động

[4][6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
912

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
929

số phức có phần thực là phần ảo. tôi mặc định là không

[6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
913

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
931

liên hợp của số phức c

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
932

cặp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
933

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
934

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
935

x to the power y

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
936

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
937

x to the power y

[5]

ghi chú

  1. Còn gọi là phép chia số nguyên. Giá trị kết quả là một số nguyên, mặc dù loại kết quả không nhất thiết phải là int. Kết quả luôn được làm tròn về phía âm vô cùng.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    938 là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    940 là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    942 là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    944 là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42

  2. Không dành cho số phức. Thay vào đó hãy chuyển đổi thành float bằng cách sử dụng

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    924 nếu thích hợp

  3. Conversion from floating point to integer may round or truncate as in C; see functions

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    947 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    948 for well-defined conversions

  4. float cũng chấp nhận các chuỗi “nan” và “inf” với tiền tố tùy chọn “+” hoặc “-” cho Không phải là Số [NaN] và vô cực dương hoặc âm

  5. Python định nghĩa

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    949 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    950 là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    55, như thường thấy đối với các ngôn ngữ lập trình

  6. Các chữ số được chấp nhận bao gồm các chữ số

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42 đến
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    953 hoặc bất kỳ mã Unicode tương đương nào [điểm mã với thuộc tính
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    954]

    Xem https. //www. unicode. org/Public/14. 0. 0/ucd/extracted/DerivedNumericType. txt để biết danh sách đầy đủ các điểm mã với thuộc tính

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    954

All

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
956 types [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902] also include the following operations

Hoạt động

Kết quả

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
959

x bị cắt ngắn thành

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
960

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
961

x rounded to n digits, rounding half to even. If n is omitted, it defaults to 0

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
962

the greatest

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
960 '-0b100101' s = s.lstrip['-0b'] # remove leading zeros and minus sign return len[s] # len['100101'] --> 6 964

the least

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
960 >= x

For additional numeric operations see the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
966 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
967 modules

Bitwise Operations on Integer Types¶

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out in two’s complement with an infinite number of sign bits

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the comparisons; the unary operation

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
968 has the same priority as the other unary numeric operations [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
969 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
970]

This table lists the bitwise operations sorted in ascending priority

Hoạt động

Kết quả

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
971

bitwise or of x and y

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
972

bitwise exclusive or of x and y

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
973

bitwise và của x và y

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
974

x shifted left by n bits

[1][2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
975

x shifted right by n bits

[1][3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
976

the bits of x inverted

ghi chú

  1. Negative shift counts are illegal and cause a

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    977 to be raised

  2. A left shift by n bits is equivalent to multiplication by

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    978

  3. A right shift by n bits is equivalent to floor division by

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    978

  4. Performing these calculations with at least one extra sign extension bit in a finite two’s complement representation [a working bit-width of

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    980 or more] is sufficient to get the same result as if there were an infinite number of sign bits

Additional Methods on Integer Types¶

The int type implements the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
981 abstract base class . In addition, it provides a few more methods.

int. bit_length[]

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
51

More precisely, if

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
982 is nonzero, then
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
983 is the unique positive integer
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
984 such that
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
985. Equivalently, when
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
923 is small enough to have a correctly rounded logarithm, then
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
987. If
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
982 is zero, then
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
983 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42

Equivalent to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6

New in version 3. 1

int. bit_count[]

Return the number of ones in the binary representation of the absolute value of the integer. This is also known as the population count. Example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9

Equivalent to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
63

New in version 3. 10

int. to_bytes[length=1 , byteorder='big' , * , signed=False]

Return an array of bytes representing an integer

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
64

The integer is represented using length bytes, and defaults to 1. An

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991 is raised if the integer is not representable with the given number of bytes

The byteorder argument determines the byte order used to represent the integer, and defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
992. If byteorder is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
992, the most significant byte is at the beginning of the byte array. If byteorder is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
994, the most significant byte is at the end of the byte array

The signed argument determines whether two’s complement is used to represent the integer. If signed is

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 and a negative integer is given, an
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991 is raised. The default value for signed is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

The default values can be used to conveniently turn an integer into a single byte object. However, when using the default arguments, don’t try to convert a value greater than 255 or you’ll get an

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
73

Equivalent to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74

New in version 3. 2

Đã thay đổi trong phiên bản 3. 11. Added default argument values for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
999 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6300.

classmethod int. from_bytes[bytes , byteorder='big' , * , signed=False]

Return the integer represented by the given array of bytes

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
77

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
992. If byteorder is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
992, the most significant byte is at the beginning of the byte array. If byteorder is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
994, the most significant byte is at the end of the byte array. To request the native byte order of the host system, use
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6304 as the byte order value

The signed argument indicates whether two’s complement is used to represent the integer

Equivalent to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
82

New in version 3. 2

Changed in version 3. 11. Added default argument value for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6300.

int. as_integer_ratio[]

Return a pair of integers whose ratio is exactly equal to the original integer and with a positive denominator. The integer ratio of integers [whole numbers] is always the integer as the numerator and

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55 as the denominator

New in version 3. 8

Additional Methods on Float¶

The float type implements the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
956 abstract base class . float also has the following additional methods.

float. as_integer_ratio[]

Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991 on infinities and a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 on NaNs

float. is_integer[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the float instance is finite with integral value, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
90

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast, hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when debugging, and in numerical work

float. hex[]

Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers, this representation will always include a leading

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6312 and a trailing
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6313 and exponent

classmethod float. fromhex[s]

Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing whitespace

Note that

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6314 is an instance method, while
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6315 is a class method

A hexadecimal string takes the form

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
0

where the optional

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6316 may by either
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
969 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
970,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6319 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6320 are strings of hexadecimal digits, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6321 is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6. 4. 4. 2 of the C99 standard, and also to the syntax used in Java 1. 5 trở đi. In particular, the output of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6314 is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6323 format character or Java’s
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6324 are accepted by
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6315

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to multiply the coefficient. For example, the hexadecimal string

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6326 represents the floating-point number
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6327, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6328

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
1

Applying the reverse conversion to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6328 gives a different hexadecimal string representing the same number

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
2

Hashing of numeric types¶

For numbers

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
982 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6331, possibly of different types, it’s a requirement that
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6332 whenever
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6333 [see the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6334 method documentation for more details]. For ease of implementation and efficiency across a variety of numeric types [including
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
907] Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number, and hence applies to all instances of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
907, and all finite instances of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908. Essentially, this function is given by reduction modulo
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6343 for a fixed prime
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6343. The value of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6343 is made available to Python as the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6346 attribute of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6347

CPython implementation detail. Currently, the prime used is

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6348 on machines with 32-bit C longs and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6349 on machines with 64-bit C longs

Here are the rules in detail

  • If

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6350 is a nonnegative rational number and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6351 is not divisible by
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6343, define
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6353 as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6354, where
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6355 gives the inverse of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6351 modulo
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6343

  • If

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6350 is a nonnegative rational number and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6351 is divisible by
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6343 [but
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6361 is not] then
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6351 has no inverse modulo
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6343 and the rule above doesn’t apply; in this case define
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6353 to be the constant value
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6365

  • If

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6350 is a negative rational number define
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6353 as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6368. If the resulting hash is
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941, replace it with
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6370

  • The particular values

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6365 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6372 are used as hash values for positive infinity or negative infinity [respectively]

  • For a

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    903 number
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6374, the hash values of the real and imaginary parts are combined by computing
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6375, reduced modulo
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6376 so that it lies in
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6377. Again, if the result is
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941, it’s replaced with
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6370

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash of a rational number,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
903

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
3

Iterator Types¶

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the iteration methods

One method needs to be defined for container objects to provide iterable support.

container. __iter__[]

Return an iterator object. The object is required to support the iterator protocol described below. If a container supports different types of iteration, additional methods can be provided to specifically request iterators for those iteration types. [An example of an object supporting multiple forms of iteration would be a tree structure which supports both breadth-first and depth-first traversal. ] This method corresponds to the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6382 slot of the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator protocol

iterator. __iter__[]

Return the iterator object itself. This is required to allow both containers and iterators to be used with the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6383 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 statements. This method corresponds to the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6382 slot of the type structure for Python objects in the Python/C API.

iterator. __next__[]

Return the next item from the iterator . If there are no further items, raise the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6386 exception. This method corresponds to the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6387 slot of the type structure for Python objects in the Python/C API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries, and other more specialized forms. The specific types are not important beyond their implementation of the iterator protocol

Once an iterator’s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6388 method raises
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6386, it must continue to do so on subsequent calls. Implementations that do not obey this property are deemed broken

Generator Types¶

Python’s generator s provide a convenient way to implement the iterator protocol. If a container object’s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6390 method is implemented as a generator, it will automatically return an iterator object [technically, a generator object] supplying the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6390 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6388 methods. Bạn có thể tìm thêm thông tin về trình tạo trong tài liệu về biểu thức năng suất .

Sequence Types —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6395¶

There are three basic sequence types. lists, tuples, and range objects. Additional sequence types tailored for processing of binary data and text strings are described in dedicated sections.

Common Sequence Operations¶

The operations in the following table are supported by most sequence types, both mutable and immutable. The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6396 ABC is provided to make it easier to correctly implement these operations on custom sequence types

This table lists the sequence operations sorted in ascending priority. In the table, s and t are sequences of the same type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
99 operations have the same priorities as the comparison operations. The
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
969 [concatenation] and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6400 [repetition] operations have the same priority as the corresponding numeric operations. 3

Hoạt động

Kết quả

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6401

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if an item of s is equal to x, else
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6404

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 if an item of s is equal to x, else
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6407

the concatenation of s and t

[6][7]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6408 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6409

equivalent to adding s to itself n times

[2][7]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6410

ith item of s, origin 0

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6411

slice of s from i to j

[3][4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6412

slice of s from i to j with step k

[3][5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

length of s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6414

smallest item of s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6415

largest item of s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6416

index of the first occurrence of x in s [at or after index i and before index j]

[8]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6417

total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically by comparing corresponding elements. This means that to compare equal, every element must compare equal and the two sequences must be of the same type and have the same length. [For full details see Comparisons in the language reference. ]

Forward and reversed iterators over mutable sequences access values using an index. That index will continue to march forward [or backward] even if the underlying sequence is mutated. The iterator terminates only when an

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6418 or a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6386 is encountered [or when the index drops below zero]

ghi chú

  1. While the

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    98 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    99 operations are used only for simple containment testing in the general case, some specialised sequences [such as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6422,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6423 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6424] also use them for subsequence testing

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    4

  2. Values of n less than

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42 are treated as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42 [which yields an empty sequence of the same type as s]. Note that items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python programmers; consider

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    5

    Điều đã xảy ra là

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6427 là danh sách một phần tử chứa danh sách trống, vì vậy cả ba phần tử của
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6428 đều là tham chiếu đến danh sách trống duy nhất này. Modifying any of the elements of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6429 modifies this single list. You can create a list of different lists this way

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6

    Further explanation is available in the FAQ entry How do I create a multidimensional list? .

  3. If i or j is negative, the index is relative to the end of sequence s.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6430 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6431 is substituted. But note that
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6432 is still
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42

  4. The slice of s from i to j is defined as the sequence of items with index k such that

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6434. If i or j is greater than
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6413, use
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6413. If i is omitted or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31, use
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42. If j is omitted or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31, use
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6413. If i is greater than or equal to j, the slice is empty

  5. The slice of s from i to j with step k is defined as the sequence of items with index

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6441 such that
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6442. In other words, the indices are
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6443,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6444,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6445,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6446 and so on, stopping when j is reached [but never including j]. When k is positive, i and j are reduced to
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6413 if they are greater. When k is negative, i and j are reduced to
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6448 if they are greater. If i or j are omitted or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31, they become “end” values [which end depends on the sign of k]. Note, k cannot be zero. If k is
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31, it is treated like
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    55

  6. Concatenating immutable sequences always results in a new object. This means that building up a sequence by repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime cost, you must switch to one of the alternatives below

    • if concatenating

      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6422 objects, you can build a list and use
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6453 at the end or else write to an
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6454 instance and retrieve its value when complete

    • if concatenating

      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6423 objects, you can similarly use
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6456 or
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6457, or you can do in-place concatenation with a
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6424 object.
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6424 objects are mutable and have an efficient overallocation mechanism

    • if concatenating

      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6394 objects, extend a
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6393 instead

    • for other types, investigate the relevant class documentation

  7. Some sequence types [such as

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6395] only support item sequences that follow specific patterns, and hence don’t support sequence concatenation or repetition

  8. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6463 raises
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    977 when x is not found in s. Not all implementations support passing the additional arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra arguments is roughly equivalent to using
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6465, only without copying any data and with the returned index being relative to the start of the sequence rather than the start of the slice

Immutable Sequence Types¶

The only operation that immutable sequence types generally implement that is not also implemented by mutable sequence types is support for the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6466 built-in

This support allows immutable sequences, such as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 instances, to be used as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468 keys and stored in
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 instances

Attempting to hash an immutable sequence that contains unhashable values will result in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88

Mutable Sequence Types¶

The operations in the following table are defined on mutable sequence types. The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6472 ABC is provided to make it easier to correctly implement these operations on custom sequence types

In the table s is an instance of a mutable sequence type, t is any iterable object and x is an arbitrary object that meets any type and value restrictions imposed by s [for example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 only accepts integers that meet the value restriction
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6474]

Hoạt động

Kết quả

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6475

item i of s is replaced by x

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6476

slice of s from i to j is replaced by the contents of the iterable t

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6477

same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6478

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6479

the elements of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6412 are replaced by those of t

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6481

removes the elements of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6412 from the list

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6483

appends x to the end of the sequence [same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6484]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6485

removes all items from s [same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6486]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6487

creates a shallow copy of s [same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6488]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6489 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6490

extends s with the contents of t [for the most part the same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6491]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6492

updates s with its contents repeated n times

[6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6493

inserts x into s at the index given by i [same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6494]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6495 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6496

retrieves the item at i and also removes it from s

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6497

remove the first item from s where

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6410 is equal to x

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6499

reverses the items of s in place

[4]

ghi chú

  1. t must have the same length as the slice it is replacing

  2. The optional argument i defaults to

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941, so that by default the last item is removed and returned

  3. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7301 raises
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    977 when x is not found in s

  4. The

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7303 method modifies the sequence in place for economy of space when reversing a large sequence. To remind users that it operates by side effect, it does not return the reversed sequence

  5. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7304 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7305 are included for consistency with the interfaces of mutable containers that don’t support slicing operations [such as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6468 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6469].
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7305 is not part of the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6472 ABC, but most concrete mutable sequence classes provide it

    New in version 3. 3.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7304 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7305 methods.

  6. The value n is an integer, or an object implementing

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7312. Zero and negative values of n clear the sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6408 under Common Sequence Operations .

Lists¶

Lists are mutable sequences, typically used to store collections of homogeneous items [where the precise degree of similarity will vary by application]

class list[[iterable]]

Lists may be constructed in several ways

  • Using a pair of square brackets to denote the empty list.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    49

  • Using square brackets, separating items with commas.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7315,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7316

  • Using a list comprehension.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7317

  • Using the type constructor.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7318 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7319

The constructor builds a list whose items are the same and in the same order as iterable’s items. iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made and returned, similar to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7320. For example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7321 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7322 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7323 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7324. If no argument is given, the constructor creates a new empty list,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
49

Many other operations also produce lists, including the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7326 built-in

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional method.

sort[* , key=None , reverse=False]

This method sorts the list in place, using only

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74 comparisons between items. Exceptions are not suppressed - if any comparison operations fail, the entire sort operation will fail [and the list will likely be left in a partially modified state]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7328 accepts two arguments that can only be passed by keyword [ keyword-only arguments ].

key specifies a function of one argument that is used to extract a comparison key from each list element [for example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7329]. The key corresponding to each item in the list is calculated once and then used for the entire sorting process. The default value of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 means that list items are sorted directly without calculating a separate key value

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7331 utility is available to convert a 2. x style cmp function to a key function

đảo ngược là một giá trị boolean. If set to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56, then the list elements are sorted as if each comparison were reversed

This method modifies the sequence in place for economy of space when sorting a large sequence. To remind users that it operates by side effect, it does not return the sorted sequence [use

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7326 to explicitly request a new sorted list instance]

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7328 method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes [for example, sort by department, then by salary grade]

For sorting examples and a brief sorting tutorial, see Sorting HOW TO .

CPython implementation detail. While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration, and raises

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 if it can detect that the list has been mutated during a sort

Tuples¶

Tuples are immutable sequences, typically used to store collections of heterogeneous data [such as the 2-tuples produced by the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7336 built-in]. Tuples are also used for cases where an immutable sequence of homogeneous data is needed [such as allowing storage in a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468 instance]

class tuple[[iterable]]

Tuples may be constructed in a number of ways

  • Using a pair of parentheses to denote the empty tuple.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    48

  • Using a trailing comma for a singleton tuple.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7340 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7341

  • Separating items with commas.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7342 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7343

  • Using the

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7344 built-in.
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7344 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7346

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned unchanged. For example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7347 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7348 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7349 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7350. If no argument is given, the constructor creates a new empty tuple,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
48

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional, except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7352 is a function call with three arguments, while
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7353 is a function call with a 3-tuple as the sole argument

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7354 may be a more appropriate choice than a simple tuple object

Ranges¶

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6395 type represents an immutable sequence of numbers and is commonly used for looping a specific number of times in
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6383 loops

class range[stop]class range[start , stop[ , step]]

The arguments to the range constructor must be integers [either built-in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 or any object that implements the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7312 special method]. If the step argument is omitted, it defaults to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55. If the start argument is omitted, it defaults to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42. If step is zero,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 is raised

For a positive step, the contents of a range

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7362 are determined by the formula
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7363 where
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7364 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7365

For a negative step, the contents of the range are still determined by the formula

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7363, but the constraints are
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7364 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7368

A range object will be empty if

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7369 does not meet the value constraint. Ranges do support negative indices, but these are interpreted as indexing from the end of the sequence determined by the positive indices

Ranges containing absolute values larger than

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7370 are permitted but some features [such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7371] may raise
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991

Range examples

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7

Ranges implement all of the common sequence operations except concatenation and repetition [due to the fact that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will usually violate that pattern].

start

The value of the start parameter [or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42 if the parameter was not supplied]

stop

The value of the stop parameter

step

Giá trị của tham số bước [hoặc

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55 nếu tham số không được cung cấp]

The advantage of the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6395 type over a regular
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 is that a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6395 object will always take the same [small] amount of memory, no matter the size of the range it represents [as it only stores the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7379,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7380 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7381 values, calculating individual items and subranges as needed]

Range objects implement the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6396 ABC, and provide features such as containment tests, element index lookup, slicing and support for negative indices [see Sequence Types — list, tuple, range ].

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8

Testing range objects for equality with

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
78 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
79 compares them as sequences. That is, two range objects are considered equal if they represent the same sequence of values. [Note that two range objects that compare equal might have different
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7379,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7380 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7381 attributes, for example
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7388 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7389. ]

Changed in version 3. 2. Implement the Sequence ABC. Support slicing and negative indices. Test

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 objects for membership in constant time instead of iterating through all items.

Changed in version 3. 3. Define ‘==’ and ‘. =’ to compare range objects based on the sequence of values they define [instead of comparing based on object identity].

New in version 3. 3. The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7379,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7380 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7381 attributes.

See also

  • The linspace recipe shows how to implement a lazy version of range suitable for floating point applications

Text Sequence Type —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422¶

Textual data in Python is handled with

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 objects, or strings. Strings are immutable sequences of Unicode code points. String literals are written in a variety of ways.

  • Single quotes.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7396

  • Double quotes.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7397

  • Triple quoted.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7398,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7399

Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal

String literals that are part of a single expression and have only whitespace between them will be implicitly converted to a single string literal. That is,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7400

See String and Bytes literals for more about the various forms of string literal, including supported escape sequences, and the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7362 [“raw”] prefix that disables most escape sequence processing.

Strings may also be created from other objects using the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 constructor

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty string s,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7403

There is also no mutable string type, but

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6453 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6454 can be used to efficiently construct strings from multiple fragments

Changed in version 3. 3. For backwards compatibility with the Python 2 series, the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7406 prefix is once again permitted on string literals. It has no effect on the meaning of string literals and cannot be combined with the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7362 prefix.

class str[object='']class str[object=b'' , encoding='utf-8' , errors='strict']

Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33 depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7409 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7410, which is the “informal” or nicely printable string representation of object. For string objects, this is the string itself. If object does not have a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7411 method, then
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33 falls back to returning
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7413

If at least one of encoding or errors is given, object should be a bytes-like object [e. g.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424]. In this case, if object is a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 [or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424] object, then
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7418 is equivalent to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7419. Mặt khác, đối tượng byte bên dưới đối tượng bộ đệm được lấy trước khi gọi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7420. See Binary Sequence Types — bytes, bytearray, memoryview and Buffer Protocol for information on buffer objects.

Passing a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 object to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33 without the encoding or errors arguments falls under the first case of returning the informal string representation [see also the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7423 command-line option to Python]. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9

For more information on the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 class and its methods, see Text Sequence Type — str and the String Methods section below. To output formatted strings, see the Formatted string literals and Format String Syntax sections. In addition, see the Text Processing Services section.

String Methods¶

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization [see

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7425, Format String Syntax and Custom String Formatting ] and the other based on C
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7426 style formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the cases it can handle [ printf-style String Formatting ].

The Text Processing Services section of the standard library covers a number of other modules that provide various text related utilities [including regular expression support in the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7427 module].

str. capitalize[]

Return a copy of the string with its first character capitalized and the rest lowercased

Changed in version 3. 8. The first character is now put into titlecase rather than uppercase. This means that characters like digraphs will only have their first letter capitalized, instead of the full character.

str. casefold[]

Return a casefolded copy of the string. Casefolded strings may be used for caseless matching

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions in a string. For example, the German lowercase letter

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7428 is equivalent to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7429. Since it is already lowercase,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7430 would do nothing to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7428;
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7432 converts it to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7429

The casefolding algorithm is described in section 3. 13 of the Unicode Standard

New in version 3. 3

str. center[width[ , fillchar]]

Return centered in a string of length width. Padding is done using the specified fillchar [default is an ASCII space]. The original string is returned if width is less than or equal to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

str. count[sub[ , start[ , end]]]

Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments start and end are interpreted as in slice notation

If sub is empty, returns the number of empty strings between characters which is the length of the string plus one

str. encode[encoding='utf-8' , errors='strict']

Return the string encoded to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423

encoding defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7436; see Standard Encodings for possible values.

errors controls how encoding errors are handled. If

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7437 [the default], a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7438 exception is raised. Other possible values are
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7439,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7440,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7441,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7442 and any other name registered via
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7443. See Error Handlers for details.

For performance reasons, the value of errors is not checked for validity unless an encoding error actually occurs, Python Development Mode is enabled or a debug build is used.

Changed in version 3. 1. Added support for keyword arguments.

Changed in version 3. 9. The value of the errors argument is now checked in Python Development Mode and in debug mode .

str. endswith[suffix[ , start[ , end]]]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the string ends with the specified suffix, otherwise return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. suffix can also be a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

str. expandtabs[tabsize=8]

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current column and the given tab size. Tab positions occur every tabsize characters [default is 8, giving tab positions at columns 0, 8, 16 and so on]. To expand the string, the current column is set to zero and the string is examined character by character. If the character is a tab [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7446], one or more space characters are inserted in the result until the current column is equal to the next tab position. [The tab character itself is not copied. ] If the character is a newline [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7447] or return [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7448], it is copied and the current column is reset to zero. Any other character is copied unchanged and the current column is incremented by one regardless of how the character is represented when printed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
90

str. find[sub[ , start[ , end]]]

Return the lowest index in the string where substring sub is found within the slice

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7449. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941 if sub is not found

Note

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7451 method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 operator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
91

str. format[*args , **kwargs]

Perform a string formatting operation. The string on which this method is called can contain literal text or replacement fields delimited by braces

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
50. Each replacement field contains either the numeric index of a positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is replaced with the string value of the corresponding argument

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
92

See Format String Syntax for a description of the various formatting options that can be specified in format strings.

Note

When formatting a number [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
903,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908 and subclasses] with the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6351 type [ex.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7459], the function temporarily sets the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7460 locale to the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7461 locale to decode
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7462 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7463 fields of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7464 if they are non-ASCII or longer than 1 byte, and the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7461 locale is different than the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7460 locale. This temporary change affects other threads

Changed in version 3. 7. When formatting a number with the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6351 type, the function sets temporarily the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7460 locale to the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7461 locale in some cases.

str. format_map[mapping]

Tương tự như

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7470, ngoại trừ việc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7471 được sử dụng trực tiếp và không được sao chép sang
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468. This is useful if for example
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7471 is a dict subclass

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
93

New in version 3. 2

str. index[sub[ , start[ , end]]]

Like

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7451, but raise
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 when the substring is not found

str. isalnum[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are alphanumeric and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. A character
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7478 is alphanumeric if one of the following returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7480,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7481,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7482, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7483

str. isalpha[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are alphabetic and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i. e. , those with general category property being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note that this is different from the “Alphabetic” property defined in the Unicode Standard

str. isascii[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the string is empty or all characters in the string are ASCII,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. ASCII characters have code points in the range U+0000-U+007F

New in version 3. 7

str. isdecimal[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are decimal characters and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Decimal characters are those that can be used to form numbers in base 10, e. g. U+0660, ARABIC-INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”

str. isdigit[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are digits and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Digits include decimal characters and digits that need special handling, such as the compatibility superscript digits. This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal

str. isidentifier[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the string is a valid identifier according to the language definition, section Identifiers and keywords .

Call

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7493 to test whether string
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7494 is a reserved identifier, such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7495 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7496

Example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
94

str. islower[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all cased characters 4 in the string are lowercase and there is at least one cased character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

str. isnumeric[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are numeric characters, and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e. g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric

str. isprintable[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are printable or the string is empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Nonprintable characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space [0x20] which is considered printable. [Lưu ý rằng các ký tự có thể in được trong ngữ cảnh này là những ký tự không được thoát khi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
32 được gọi trên một chuỗi. It has no bearing on the handling of strings written to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7704 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7705. ]

str. isspace[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if there are only whitespace characters in the string and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

A character is whitespace if in the Unicode character database [see

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7708], either its general category is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7709 [“Separator, space”], or its bidirectional class is one of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7710,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7711, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7712

str. istitle[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the string is a titlecased string and there is at least one character, for example uppercase characters may only follow uncased characters and lowercase characters only cased ones. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

str. isupper[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all cased characters 4 in the string are uppercase and there is at least one cased character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
95

str. join[iterable]

Return a string which is the concatenation of the strings in iterable. A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88 will be raised if there are any non-string values in iterable, including
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects. The separator between elements is the string providing this method

str. ljust[width[ , fillchar]]

Return the string left justified in a string of length width. Padding is done using the specified fillchar [default is an ASCII space]. The original string is returned if width is less than or equal to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

str. lower[]

Return a copy of the string with all the cased characters 4 converted to lowercase

The lowercasing algorithm used is described in section 3. 13 of the Unicode Standard

str. lstrip[[chars]]

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
96

See

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7721 for a method that will remove a single prefix string rather than all of a set of characters. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
97

static str. maketrans[x[ , y[ , z]]]

This static method returns a translation table usable for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7722

If there is only one argument, it must be a dictionary mapping Unicode ordinals [integers] or characters [strings of length 1] to Unicode ordinals, strings [of arbitrary lengths] or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31. Character keys will then be converted to ordinals

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string, whose characters will be mapped to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 in the result

str. partition[sep]

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the string itself, followed by two empty strings

str. removeprefix[prefix , /]

If the string starts with the prefix string, return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7725. Otherwise, return a copy of the original string

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98

New in version 3. 9

str. hậu tố loại bỏ[hậu tố , /]

If the string ends with the suffix string and that suffix is not empty, return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7726. Otherwise, return a copy of the original string

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
99

New in version 3. 9

str. replace[old , new[ , count]]

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count is given, only the first count occurrences are replaced

str. rfind[sub[ , start[ , end]]]

Return the highest index in the string where substring sub is found, such that sub is contained within

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7449. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941 on failure

str. rindex[sub[ , start[ , end]]]

Like

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7729 but raises
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 when the substring sub is not found

str. rjust[width[ , fillchar]]

Return the string right justified in a string of length width. Padding is done using the specified fillchar [default is an ASCII space]. The original string is returned if width is less than or equal to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

str. rpartition[sep]

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two empty strings, followed by the string itself

str. rsplit[sep=None , maxsplit=- 1]

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, any whitespace string is a separator. Except for splitting from the right,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7733 behaves like
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7734 which is described in detail below

str. rstrip[[chars]]

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
630

See

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7736 for a method that will remove a single suffix string rather than all of a set of characters. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
631

str. split[sep=None , maxsplit=- 1]

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done [thus, the list will have at most

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7737 elements]. If maxsplit is not specified or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941, then there is no limit on the number of splits [all possible splits are made]

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings [for example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7739 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7740]. The sep argument may consist of multiple characters [for example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7741 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7742]. Splitting an empty string with a specified separator returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7743

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
632

If sep is not specified or is

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, a different splitting algorithm is applied. runs of consecutive whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the string has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace with a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 separator returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
49

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
633

str. splitlines[keepends=False]

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list unless keepends is given and true

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal newlines .

Representation

Description

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7447

Line Feed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7448

Carriage Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7749

Carriage Return + Line Feed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7750 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7751

Line Tabulation

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7752 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7753

Form Feed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7754

File Separator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7755

Group Separator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7756

Record Separator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7757

Next Line [C1 Control Code]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7758

Line Separator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7759

Paragraph Separator

Changed in version 3. 2.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7750 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7752 added to list of line boundaries.

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
634

Unlike

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7734 when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
635

For comparison,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7763 gives

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
636

str. startswith[prefix[ , start[ , end]]]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if string starts with the prefix, otherwise return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. prefix can also be a tuple of prefixes to look for. With optional start, test string beginning at that position. With optional end, stop comparing string at that position

str. strip[[chars]]

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
637

The outermost leading and trailing chars argument values are stripped from the string. Các ký tự bị xóa khỏi đầu cuối cho đến khi đạt đến một ký tự chuỗi không có trong bộ ký tự trong ký tự. A similar action takes place on the trailing end. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
638

str. swapcase[]

Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not necessarily true that

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7767

str. title[]

Return a titlecased version of the string where words start with an uppercase character and the remaining characters are lowercase

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
639

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
640

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7768 function does not have this problem, as it splits words on spaces only

Alternatively, a workaround for apostrophes can be constructed using regular expressions

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
641

str. translate[table]

Return a copy of the string in which each character has been mapped through the given translation table. The table must be an object that implements indexing via

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7769, typically a mapping or sequence . When indexed by a Unicode ordinal [an integer], the table object can do any of the following. return a Unicode ordinal or a string, to map the character to one or more other characters; return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, to delete the character from the return string; or raise a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7771 exception, to map the character to itself.

You can use

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7772 to create a translation map from character-to-character mappings in different formats

See also the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7773 module for a more flexible approach to custom character mappings

str. upper[]

Return a copy of the string with all the cased characters 4 converted to uppercase. Note that

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7774 might be
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 if
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7494 contains uncased characters or if the Unicode category of the resulting character[s] is not “Lu” [Letter, uppercase], but e. g. “Lt” [Letter, titlecase]

The uppercasing algorithm used is described in section 3. 13 of the Unicode Standard

str. zfill[width]

Return a copy of the string left filled with ASCII

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777 digits to make a string of length width. A leading sign prefix [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778/
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7779] is handled by inserting the padding after the sign character rather than before. The original string is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
642

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7426-style String Formatting¶

Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors [such as failing to display tuples and dictionaries correctly]. Using the newer formatted string literals , the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7425 interface, or template strings may help avoid these errors. Each of these alternatives provides their own trade-offs and benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation. the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7783 operator [modulo]. This is also known as the string formatting or interpolation operator. Given
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7784 [where format is a string],
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7783 conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7786 in the C language

If format requires a single argument, values may be a single non-tuple object. 5 Otherwise, values must be a tuple with exactly the number of items specified by the format string, or a single mapping object [for example, a dictionary]

A conversion specifier contains two or more characters and has the following components, which must occur in this order

  1. The

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7787 character, which marks the start of the specifier

  2. Khóa ánh xạ [tùy chọn], bao gồm một chuỗi ký tự trong ngoặc đơn [ví dụ:

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7788]

  3. Conversion flags [optional], which affect the result of some conversion types

  4. Minimum field width [optional]. Nếu được chỉ định là

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7789 [dấu hoa thị], chiều rộng thực tế được đọc từ phần tử tiếp theo của bộ giá trị và đối tượng cần chuyển đổi xuất hiện sau chiều rộng trường tối thiểu và độ chính xác tùy chọn

  5. Precision [optional], given as a

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7790 [dot] followed by the precision. If specified as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7789 [an asterisk], the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Công cụ sửa đổi độ dài [tùy chọn]

  7. Conversion type

When the right argument is a dictionary [or other mapping type], then the formats in the string must include a parenthesised mapping key into that dictionary inserted immediately after the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7787 character. The mapping key selects the value to be formatted from the mapping. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
643

In this case no

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6400 specifiers may occur in a format [since they require a sequential parameter list]

The conversion flag characters are

Lá cờ

Meaning

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7794

Việc chuyển đổi giá trị sẽ sử dụng “hình thức thay thế” [được định nghĩa bên dưới]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777

The conversion will be zero padded for numeric values

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7779

The converted value is left adjusted [overrides the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777 conversion if both are given]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7798

[khoảng trắng] Nên để trống trước số dương [hoặc chuỗi trống] được tạo bởi chuyển đổi đã ký

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778

Ký tự dấu [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7779] sẽ đứng trước chuyển đổi [ghi đè cờ “dấu cách”]

Có thể có công cụ sửa đổi độ dài [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8202,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8203 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8204], nhưng bị bỏ qua vì nó không cần thiết đối với Python – vì vậy e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8205 giống hệt với
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8206

The conversion types are

Conversion

Meaning

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8207

Signed integer decimal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8208

Signed integer decimal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8209

Signed octal value

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8210

Obsolete type – it is identical to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8207

[6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8212

Đã ký thập lục phân [chữ thường]

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8213

Đã ký thập lục phân [chữ hoa]

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8214

Floating point exponential format [lowercase]

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8215

Định dạng số mũ dấu phẩy động [chữ hoa]

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8216

Floating point decimal format

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8217

Floating point decimal format

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8218

Định dạng dấu phẩy động. Sử dụng định dạng số mũ chữ thường nếu số mũ nhỏ hơn -4 hoặc không nhỏ hơn độ chính xác, nếu không thì định dạng thập phân

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8219

Định dạng dấu phẩy động. Sử dụng định dạng số mũ viết hoa nếu số mũ nhỏ hơn -4 hoặc không nhỏ hơn độ chính xác, nếu không thì định dạng thập phân

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8220

Ký tự đơn [chấp nhận số nguyên hoặc chuỗi ký tự đơn]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8221

Chuỗi [chuyển đổi bất kỳ đối tượng Python nào bằng cách sử dụng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
32]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8223

Chuỗi [chuyển đổi bất kỳ đối tượng Python nào bằng cách sử dụng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8225

Chuỗi [chuyển đổi bất kỳ đối tượng Python nào bằng cách sử dụng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8226]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7787

Không có đối số nào được chuyển đổi, dẫn đến ký tự

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7787 trong kết quả

ghi chú

  1. Dạng thay thế làm cho một bộ xác định bát phân hàng đầu [

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8229] được chèn vào trước chữ số đầu tiên

  2. Dạng thay thế làm cho một

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8230 hoặc
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8231 đứng đầu [tùy thuộc vào việc định dạng
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8212 hoặc
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8213 được sử dụng] được chèn vào trước chữ số đầu tiên

  3. Dạng thay thế khiến kết quả luôn chứa dấu thập phân, ngay cả khi không có chữ số nào theo sau nó

    Độ chính xác xác định số chữ số sau dấu thập phân và mặc định là 6

  4. Dạng thay thế làm cho kết quả luôn chứa dấu thập phân và các số 0 ở cuối không bị xóa như cách khác

    Độ chính xác xác định số chữ số có nghĩa trước và sau dấu thập phân và mặc định là 6

  5. Nếu độ chính xác là

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8234, đầu ra bị cắt bớt thành ký tự
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8234

  6. Xem PEP 237

Vì các chuỗi Python có độ dài rõ ràng, các chuyển đổi của

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8236 không cho rằng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8237 là phần cuối của chuỗi

Đã thay đổi trong phiên bản 3. 1. ______18238 chuyển đổi cho các số có giá trị tuyệt đối trên 1e50 không còn được thay thế bằng chuyển đổi

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8239.

Các loại chuỗi nhị phân —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242¶

Các loại tích hợp cốt lõi để thao tác dữ liệu nhị phân là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424. Chúng được hỗ trợ bởi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242 sử dụng giao thức bộ đệm để truy cập bộ nhớ của các đối tượng nhị phân khác mà không cần tạo bản sao.

Mô-đun

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8246 hỗ trợ lưu trữ hiệu quả các loại dữ liệu cơ bản như số nguyên 32 bit và giá trị nổi chính xác kép IEEE754

Đối tượng byte¶

Các đối tượng byte là các chuỗi bất biến của các byte đơn. Do nhiều giao thức nhị phân chính dựa trên mã hóa văn bản ASCII, các đối tượng byte cung cấp một số phương thức chỉ hợp lệ khi làm việc với dữ liệu tương thích ASCII và có liên quan chặt chẽ với các đối tượng chuỗi theo nhiều cách khác nhau

lớp byte[[nguồn[, encoding[, errors]]]]

Đầu tiên, cú pháp cho các ký tự byte phần lớn giống như cú pháp cho các ký tự chuỗi, ngoại trừ tiền tố

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8247 được thêm vào

  • Dấu nháy đơn.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8248

  • Dấu ngoặc kép.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8249

  • Ba trích dẫn.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8250,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8251

Chỉ cho phép các ký tự ASCII theo byte bằng chữ [bất kể mã hóa mã nguồn đã khai báo]. Bất kỳ giá trị nhị phân nào trên 127 phải được nhập vào byte bằng chữ bằng cách sử dụng trình tự thoát thích hợp

Giống như chuỗi ký tự, ký tự byte cũng có thể sử dụng tiền tố

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7362 để vô hiệu hóa quá trình xử lý chuỗi thoát. Xem Chuỗi và ký tự byte để biết thêm về các dạng ký tự byte khác nhau, bao gồm các chuỗi thoát được hỗ trợ.

Mặc dù các ký tự byte và biểu diễn dựa trên văn bản ASCII, nhưng các đối tượng byte thực sự hoạt động giống như các chuỗi số nguyên bất biến, với mỗi giá trị trong chuỗi bị hạn chế sao cho

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8253 [cố gắng vi phạm hạn chế này sẽ kích hoạt
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977]. Điều này được thực hiện có chủ ý để nhấn mạnh rằng trong khi nhiều định dạng nhị phân bao gồm các phần tử dựa trên ASCII và có thể được thao tác hữu ích với một số thuật toán hướng văn bản, thì điều này thường không xảy ra đối với dữ liệu nhị phân tùy ý [áp dụng một cách mù quáng các thuật toán xử lý văn bản cho các định dạng dữ liệu nhị phân không phải là

Ngoài các dạng chữ, các đối tượng byte có thể được tạo theo một số cách khác

  • Một đối tượng byte được điền bằng 0 có độ dài được chỉ định.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8255

  • Từ một số nguyên có thể lặp lại.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8256

  • Sao chép dữ liệu nhị phân hiện có thông qua giao thức bộ đệm.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8257

Cũng xem byte tích hợp.

Vì 2 chữ số thập lục phân tương ứng chính xác với một byte đơn, số thập lục phân là định dạng thường được sử dụng để mô tả dữ liệu nhị phân. Theo đó, kiểu bytes có thêm một phương thức lớp để đọc dữ liệu ở định dạng đó

phương pháp phân lớp từ hex[chuỗi]

Phương thức lớp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 này trả về một đối tượng byte, giải mã đối tượng chuỗi đã cho. Chuỗi phải chứa hai chữ số thập lục phân trên mỗi byte, bỏ qua khoảng trắng ASCII

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
644

Đã thay đổi trong phiên bản 3. 7. ______18259 hiện bỏ qua tất cả khoảng trắng ASCII trong chuỗi, không chỉ khoảng trắng.

Hàm chuyển đổi ngược tồn tại để chuyển đổi một đối tượng byte thành biểu diễn thập lục phân của nó

hex[[sep[, bytes_per_sep]]]

Trả về một đối tượng chuỗi chứa hai chữ số thập lục phân cho mỗi byte trong ví dụ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
645

Nếu bạn muốn làm cho chuỗi hex dễ đọc hơn, bạn có thể chỉ định một tham số sep tách ký tự đơn để đưa vào đầu ra. Theo mặc định, dấu tách này sẽ được bao gồm giữa mỗi byte. Tham số bytes_per_sep tùy chọn thứ hai kiểm soát khoảng cách. Các giá trị dương tính toán vị trí phân cách từ bên phải, các giá trị âm từ bên trái

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
646

Mới trong phiên bản 3. 5

Đã thay đổi trong phiên bản 3. 8. ______18260 hiện hỗ trợ các tham số sep và bytes_per_sep tùy chọn để chèn dấu phân cách giữa các byte trong đầu ra hex.

Vì đối tượng bytes là chuỗi các số nguyên [tương tự như bộ tuple], đối với đối tượng bytes b,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8261 sẽ là số nguyên, trong khi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8262 sẽ là đối tượng bytes có độ dài 1. [Điều này trái ngược với các chuỗi văn bản, trong đó cả lập chỉ mục và cắt sẽ tạo ra một chuỗi có độ dài 1]

The representation of bytes objects uses the literal format [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8263] since it is often more useful than e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8264. You can always convert a bytes object into a list of integers using
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8265

Bytearray Objects¶

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 objects are a mutable counterpart to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects

class bytearray[[source[ , encoding[ , errors]]]]

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the constructor

  • Creating an empty instance.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8268

  • Creating a zero-filled instance with a given length.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8269

  • From an iterable of integers.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8270

  • Copying existing binary data via the buffer protocol.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8271

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common bytes and bytearray operations described in Bytes and Bytearray Operations .

Also see the bytearray built-in.

Vì 2 chữ số thập lục phân tương ứng chính xác với một byte đơn, số thập lục phân là định dạng thường được sử dụng để mô tả dữ liệu nhị phân. Accordingly, the bytearray type has an additional class method to read data in that format

phương pháp phân lớp từ hex[chuỗi]

Phương thức lớp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 này trả về đối tượng bytearray, giải mã đối tượng chuỗi đã cho. Chuỗi phải chứa hai chữ số thập lục phân trên mỗi byte, bỏ qua khoảng trắng ASCII

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
647

Changed in version 3. 7.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8273 now skips all ASCII whitespace in the string, not just spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation

hex[[sep[, bytes_per_sep]]]

Trả về một đối tượng chuỗi chứa hai chữ số thập lục phân cho mỗi byte trong ví dụ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
648

Mới trong phiên bản 3. 5

Changed in version 3. 8. Similar to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8260,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8275 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers [akin to a list], for a bytearray object b,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8261 will be an integer, while
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8262 will be a bytearray object of length 1. [This contrasts with text strings, where both indexing and slicing will produce a string of length 1]

The representation of bytearray objects uses the bytes literal format [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8278] since it is often more useful than e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8279. You can always convert a bytearray object into a list of integers using
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8265

Bytes and Bytearray Operations¶

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands of the same type, but with any bytes-like object . Due to this flexibility, they can be freely mixed in operations without causing errors. However, the return type of the result may depend on the order of operands.

Note

Các phương thức trên các đối tượng byte và bytearray không chấp nhận các chuỗi làm đối số của chúng, giống như các phương thức trên các chuỗi không chấp nhận các byte làm đối số của chúng. For example, you have to write

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
649

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
730

Một số hoạt động byte và bytearray giả sử sử dụng định dạng nhị phân tương thích ASCII và do đó nên tránh khi làm việc với dữ liệu nhị phân tùy ý. Những hạn chế này được đề cập dưới đây

Note

Sử dụng các hoạt động dựa trên ASCII này để thao tác dữ liệu nhị phân không được lưu trữ ở định dạng dựa trên ASCII có thể dẫn đến hỏng dữ liệu

Có thể sử dụng các phương thức sau trên đối tượng byte và bytearray với dữ liệu nhị phân tùy ý

byte. đếm[phụ[ , . start[, end]]]bytearray.đếm[phụ[ , start[, end]]]

Trả về số lần xuất hiện không trùng lặp của subsequence sub trong phạm vi [bắt đầu, kết thúc]. Các đối số tùy chọn bắt đầu và kết thúc được diễn giải như trong ký hiệu lát cắt

Dãy con cần tìm có thể là bất kỳ đối tượng giống như byte hoặc một số nguyên trong khoảng từ 0 đến 255.

If sub is empty, returns the number of empty slices between characters which is the length of the bytes object plus one

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. removeprefix[prefix , /]bytearray. removeprefix[prefix , /]

If the binary data starts with the prefix string, return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8281. Otherwise, return a copy of the original binary data

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
731

The prefix may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

New in version 3. 9

bytes. removesuffix[suffix , /]bytearray. removesuffix[suffix , /]

If the binary data ends with the suffix string and that suffix is not empty, return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8282. Otherwise, return a copy of the original binary data

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
732

Hậu tố có thể là bất kỳ đối tượng giống như byte .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

New in version 3. 9

bytes. decode[encoding='utf-8' , errors='strict']bytearray. decode[encoding='utf-8' , errors='strict']

Return the bytes decoded to a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422

encoding defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7436; see Standard Encodings for possible values.

errors controls how decoding errors are handled. If

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7437 [the default], a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7438 exception is raised. Other possible values are
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7439,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7440, and any other name registered via
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7443. See Error Handlers for details.

For performance reasons, the value of errors is not checked for validity unless a decoding error actually occurs, Python Development Mode is enabled or a debug build is used.

Note

Passing the encoding argument to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 allows decoding any bytes-like object directly, without needing to make a temporary
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 object.

Changed in version 3. 1. Added support for keyword arguments.

Changed in version 3. 9. The value of the errors argument is now checked in Python Development Mode and in debug mode .

bytes. endswith[suffix[ , start[ , end]]]bytearray. endswith[suffix[ , start[ , end]]]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the binary data ends with the specified suffix, otherwise return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. suffix can also be a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

The suffix[es] to search for may be any bytes-like object .

bytes. find[sub[ , start[ , end]]]bytearray. find[sub[ , start[ , end]]]

Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7449. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941 if sub is not found

Dãy con cần tìm có thể là bất kỳ đối tượng giống như byte hoặc một số nguyên trong khoảng từ 0 đến 255.

Note

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7451 method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 operator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
733

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. index[sub[ , start[ , end]]]bytearray. index[sub[ , start[ , end]]]

Like

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7451, but raise
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 when the subsequence is not found

Dãy con cần tìm có thể là bất kỳ đối tượng giống như byte hoặc một số nguyên trong khoảng từ 0 đến 255.

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. join[iterable]bytearray. join[iterable]

Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88 will be raised if there are any values in iterable that are not bytes-like objects , including
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 objects. The separator between elements is the contents of the bytes or bytearray object providing this method.

tĩnh byte. maketrans[from , to]static bytearray. maketrans[from , to]

This static method returns a translation table usable for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9003 that will map each character in from into the character at the same position in to; from and to must both be bytes-like objects and have the same length.

New in version 3. 1

bytes. partition[sep]bytearray. partition[sep]

Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects

The separator to search for may be any bytes-like object .

bytes. replace[old , new[ , count]]bytearray. replace[old , new[ , count]]

Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional argument count is given, only the first count occurrences are replaced

The subsequence to search for and its replacement may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rfind[sub[ , start[ , end]]]bytearray. rfind[sub[ , start[ , end]]]

Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7449. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941 on failure

Dãy con cần tìm có thể là bất kỳ đối tượng giống như byte hoặc một số nguyên trong khoảng từ 0 đến 255.

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. rindex[sub[ , start[ , end]]]bytearray. rindex[sub[ , start[ , end]]]

Like

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7729 but raises
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 when the subsequence sub is not found

Dãy con cần tìm có thể là bất kỳ đối tượng giống như byte hoặc một số nguyên trong khoảng từ 0 đến 255.

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. rpartition[sep]bytearray. rpartition[sep]

Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple containing two empty bytes or bytearray objects, followed by a copy of the original sequence

The separator to search for may be any bytes-like object .

bytes. startswith[prefix[ , start[ , end]]]bytearray. startswith[prefix[ , start[ , end]]]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the binary data starts with the specified prefix, otherwise return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. prefix can also be a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

The prefix[es] to search for may be any bytes-like object .

bytes. translate[table , / , delete=b'']bytearray. translate[table , / , delete=b'']

Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes object of length 256

You can use the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9010 method to create a translation table

Set the table argument to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 for translations that only delete characters

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
734

Changed in version 3. 6. delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII compatible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that all of the bytearray methods in this section do not operate in place, and instead produce new objects

bytes. center[width[ , fillbyte]]bytearray. center[width[ , fillbyte]]

Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte [default is an ASCII space]. For

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. ljust[width[ , fillbyte]]bytearray. ljust[width[ , fillbyte]]

Return a copy of the object left justified in a sequence of length width. Padding is done using the specified fillbyte [default is an ASCII space]. For

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. lstrip[[chars]]bytearray. lstrip[[chars]]

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
735

Chuỗi nhị phân của các giá trị byte cần xóa có thể là bất kỳ đối tượng giống byte . See

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9017 for a method that will remove a single prefix string rather than all of a set of characters. For example.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
736

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rjust[width[ , fillbyte]]bytearray. rjust[width[ , fillbyte]]

Return a copy of the object right justified in a sequence of length width. Padding is done using the specified fillbyte [default is an ASCII space]. For

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rsplit[sep=None , maxsplit=- 1]bytearray. rsplit[sep=None , maxsplit=- 1]

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, any subsequence consisting solely of ASCII whitespace is a separator. Except for splitting from the right,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7733 behaves like
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7734 which is described in detail below

bytes. rstrip[[chars]]bytearray. rstrip[[chars]]

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
737

The binary sequence of byte values to remove may be any bytes-like object . See

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9024 for a method that will remove a single suffix string rather than all of a set of characters. For example.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
738

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. split[sep=None , maxsplit=- 1]bytearray. split[sep=None , maxsplit=- 1]

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given and non-negative, at most maxsplit splits are done [thus, the list will have at most

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7737 elements]. If maxsplit is not specified or is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941, then there is no limit on the number of splits [all possible splits are made]

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences [for example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9027 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9028]. The sep argument may consist of a multibyte sequence [for example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9029 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9030]. Splitting an empty sequence with a specified separator returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9031 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9032 depending on the type of object being split. The sep argument may be any bytes-like object .

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
739

If sep is not specified or is

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, a different splitting algorithm is applied. runs of consecutive ASCII whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the sequence has leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consisting solely of ASCII whitespace without a specified separator returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
49

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
740

bytes. strip[[chars]]bytearray. strip[[chars]]

Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
741

The binary sequence of byte values to remove may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should not be applied to arbitrary binary data. Lưu ý rằng tất cả các phương thức bytearray trong phần này không hoạt động tại chỗ mà thay vào đó tạo ra các đối tượng mới

bytes. capitalize[]bytearray. capitalize[]

Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized and the rest lowercased. Non-ASCII byte values are passed through unchanged

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. expandtabs[tabsize=8]bytearray. expandtabs[tabsize=8]

Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces, depending on the current column and the given tab size. Tab positions occur every tabsize bytes [default is 8, giving tab positions at columns 0, 8, 16 and so on]. To expand the sequence, the current column is set to zero and the sequence is examined byte by byte. If the byte is an ASCII tab character [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9036], one or more space characters are inserted in the result until the current column is equal to the next tab position. [The tab character itself is not copied. ] If the current byte is an ASCII newline [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9037] or carriage return [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9038], it is copied and the current column is reset to zero. Any other byte value is copied unchanged and the current column is incremented by one regardless of how the byte value is represented when printed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
742

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. isalnum[]bytearray. isalnum[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Alphabetic ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9041. ASCII decimal digits are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9042

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
743

bytes. isalpha[]bytearray. isalpha[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all bytes in the sequence are alphabetic ASCII characters and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Alphabetic ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9041

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
744

bytes. isascii[]bytearray. isascii[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the sequence is empty or all bytes in the sequence are ASCII,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. ASCII bytes are in the range 0-0x7F

New in version 3. 7

bytes. isdigit[]bytearray. isdigit[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all bytes in the sequence are ASCII decimal digits and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. ASCII decimal digits are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9042

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
745

bytes. islower[]bytearray. islower[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII characters,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
746

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9053. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9054

bytes. isspace[]bytearray. isspace[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all bytes in the sequence are ASCII whitespace and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. ASCII whitespace characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9057 [space, tab, newline, carriage return, vertical tab, form feed]

bytes. istitle[]bytearray. istitle[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the sequence is ASCII titlecase and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. See
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9060 for more details on the definition of “titlecase”

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
747

bytes. isupper[]bytearray. ăn tối[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase ASCII characters,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
748

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9053. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9054

bytes. lower[]bytearray. lower[]

Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding lowercase counterpart

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
749

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9053. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9054

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. splitlines[keepends=False]bytearray. splitlines[keepends=False]

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends is given and true.

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
770

Unlike

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7734 when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
771

bytes. swapcase[]bytearray. swapcase[]

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase counterpart and vice-versa

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
772

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9053. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9054

Unlike

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9070, it is always the case that
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9071 for the binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary Unicode code points

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. title[]bytearray. title[]

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and the remaining characters are lowercase. Uncased byte values are left unmodified

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
773

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9053. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9054. All other byte values are uncased

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
774

A workaround for apostrophes can be constructed using regular expressions

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
775

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. upper[]bytearray. upper[]

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase counterpart

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
776

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9053. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9054

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. zfill[width]bytearray. zfill[width]

Return a copy of the sequence left filled with ASCII

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9076 digits to make a sequence of length width. A leading sign prefix [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9077/
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9078] is handled by inserting the padding after the sign character rather than before. For
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9080

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
777

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7426-style Bytes Formatting¶

Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors [such as failing to display tuples and dictionaries correctly]. If the value being printed may be a tuple or dictionary, wrap it in a tuple

Bytes objects [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423/
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424] have one unique built-in operation. the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7783 operator [modulo]. This is also known as the bytes formatting or interpolation operator. Given
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7784 [where format is a bytes object],
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7783 conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7786 in the C language

If format requires a single argument, values may be a single non-tuple object. 5 Mặt khác, các giá trị phải là một bộ có số mục chính xác được chỉ định bởi đối tượng byte định dạng hoặc một đối tượng ánh xạ đơn lẻ [ví dụ: từ điển]

A conversion specifier contains two or more characters and has the following components, which must occur in this order

  1. The

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7787 character, which marks the start of the specifier

  2. Khóa ánh xạ [tùy chọn], bao gồm một chuỗi ký tự trong ngoặc đơn [ví dụ:

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7788]

  3. Conversion flags [optional], which affect the result of some conversion types

  4. Minimum field width [optional]. Nếu được chỉ định là

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7789 [dấu hoa thị], chiều rộng thực tế được đọc từ phần tử tiếp theo của bộ giá trị và đối tượng cần chuyển đổi xuất hiện sau chiều rộng trường tối thiểu và độ chính xác tùy chọn

  5. Precision [optional], given as a

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7790 [dot] followed by the precision. If specified as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7789 [an asterisk], the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Công cụ sửa đổi độ dài [tùy chọn]

  7. Conversion type

When the right argument is a dictionary [or other mapping type], then the formats in the bytes object must include a parenthesised mapping key into that dictionary inserted immediately after the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7787 character. The mapping key selects the value to be formatted from the mapping. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
778

In this case no

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6400 specifiers may occur in a format [since they require a sequential parameter list]

The conversion flag characters are

Lá cờ

Meaning

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7794

Việc chuyển đổi giá trị sẽ sử dụng “hình thức thay thế” [được định nghĩa bên dưới]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777

The conversion will be zero padded for numeric values

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7779

The converted value is left adjusted [overrides the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777 conversion if both are given]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7798

[khoảng trắng] Nên để trống trước số dương [hoặc chuỗi trống] được tạo bởi chuyển đổi đã ký

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778

Ký tự dấu [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7779] sẽ đứng trước chuyển đổi [ghi đè cờ “dấu cách”]

Có thể có công cụ sửa đổi độ dài [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8202,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8203 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8204], nhưng bị bỏ qua vì nó không cần thiết đối với Python – vì vậy e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8205 giống hệt với
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8206

The conversion types are

Conversion

Meaning

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8207

Signed integer decimal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8208

Signed integer decimal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8209

Signed octal value

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8210

Obsolete type – it is identical to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8207

[8]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8212

Đã ký thập lục phân [chữ thường]

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8213

Đã ký thập lục phân [chữ hoa]

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8214

Floating point exponential format [lowercase]

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8215

Định dạng số mũ dấu phẩy động [chữ hoa]

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8216

Floating point decimal format

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8217

Floating point decimal format

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8218

Định dạng dấu phẩy động. Sử dụng định dạng số mũ chữ thường nếu số mũ nhỏ hơn -4 hoặc không nhỏ hơn độ chính xác, nếu không thì định dạng thập phân

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8219

Định dạng dấu phẩy động. Sử dụng định dạng số mũ viết hoa nếu số mũ nhỏ hơn -4 hoặc không nhỏ hơn độ chính xác, nếu không thì định dạng thập phân

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8220

Single byte [accepts integer or single byte objects]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
022

Bytes [any object that follows the buffer protocol or has

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
023].

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8223

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8223 is an alias for
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
022 and should only be used for Python2/3 code bases

[6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8225

Bytes [converts any Python object using

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
028]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8221

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8221 is an alias for
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8225 and should only be used for Python2/3 code bases

[7]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7787

Không có đối số nào được chuyển đổi, dẫn đến ký tự

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7787 trong kết quả

ghi chú

  1. Dạng thay thế làm cho một bộ xác định bát phân hàng đầu [

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8229] được chèn vào trước chữ số đầu tiên

  2. Dạng thay thế làm cho một

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8230 hoặc
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8231 đứng đầu [tùy thuộc vào việc định dạng
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8212 hoặc
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8213 được sử dụng] được chèn vào trước chữ số đầu tiên

  3. Dạng thay thế khiến kết quả luôn chứa dấu thập phân, ngay cả khi không có chữ số nào theo sau nó

    Độ chính xác xác định số chữ số sau dấu thập phân và mặc định là 6

  4. Dạng thay thế làm cho kết quả luôn chứa dấu thập phân và các số 0 ở cuối không bị xóa như cách khác

    Độ chính xác xác định số chữ số có nghĩa trước và sau dấu thập phân và mặc định là 6

  5. Nếu độ chính xác là

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8234, đầu ra bị cắt bớt thành ký tự
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8234

  6. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    041 is deprecated, but will not be removed during the 3. x series

  7. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    042 is deprecated, but will not be removed during the 3. x series

  8. Xem PEP 237

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

See also

PEP 461 - Adding % formatting to bytes and bytearray

Mới trong phiên bản 3. 5

Memory Views¶

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242 objects allow Python code to access the internal data of an object that supports the buffer protocol without copying.

class memoryview[object]

Create a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242 that references object. object must support the buffer protocol. Built-in objects that support the buffer protocol include
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424

A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242 has the notion of an element, which is the atomic memory unit handled by the originating object. For many simple types such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424, an element is a single byte, but other types such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
050 may have bigger elements

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
051 is equal to the length of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
052. If
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
053, the length is 1. If
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
054, the length is equal to the number of elements in the view. For higher dimensions, the length is equal to the length of the nested list representation of the view. The
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
055 attribute will give you the number of bytes in a single element

A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242 supports slicing and indexing to expose its data. One-dimensional slicing will result in a subview

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
779

If

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
057 is one of the native format specifiers from the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 module, indexing with an integer or a tuple of integers is also supported and returns a single element with the correct type. One-dimensional memoryviews can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can be indexed with the empty tuple

Here is an example with a non-byte format

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
820

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is not allowed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
821

One-dimensional memoryviews of hashable [read-only] types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The hash is defined as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
059

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
822

Changed in version 3. 3. One-dimensional memoryviews can now be sliced. One-dimensional memoryviews with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3. 4. memoryview is now registered automatically with

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6396

Changed in version 3. 5. memoryviews can now be indexed with tuple of integers.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242 has several methods

__eq__[exporter]

Chế độ xem bộ nhớ và trình xuất PEP 3118 bằng nhau nếu hình dạng của chúng tương đương nhau và nếu tất cả các giá trị tương ứng đều bằng nhau khi mã định dạng tương ứng của toán hạng được diễn giải bằng cú pháp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058

For the subset of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 format strings currently supported by
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
064,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
065 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
066 are equal if
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
067

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
823

If either format string is not supported by the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 module, then the objects will always compare as unequal [even if the format strings and buffer contents are identical]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
824

Note that, as with floating point numbers,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
069 does not imply
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
070 for memoryview objects

Changed in version 3. 3. Previous versions compared the raw memory disregarding the item format and the logical array structure.

tobytes[order='C']

Return the data in the buffer as a bytestring. This is equivalent to calling the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 constructor on the memoryview

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
825

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted to bytes.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
072 supports all format strings, including those that are not in
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 module syntax

New in version 3. 8. order can be {‘C’, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory. In particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to C first. order=None is the same as order=’C’.

hex[[sep[, bytes_per_sep]]]

Return a string object containing two hexadecimal digits for each byte in the buffer

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
826

Mới trong phiên bản 3. 5

Changed in version 3. 8. Similar to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8260,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
075 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

tolist[]

Return the data in the buffer as a list of elements

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
827

Changed in version 3. 3.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
064 now supports all single character native formats in
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 module syntax as well as multi-dimensional representations.

toreadonly[]

Return a readonly version of the memoryview object. The original memoryview object is unchanged

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
828

New in version 3. 8

release[]

Release the underlying buffer exposed by the memoryview object. Many objects take special actions when a view is held on them [for example, a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 would temporarily forbid resizing]; therefore, calling release[] is handy to remove these restrictions [and free any dangling resources] as soon as possible

After this method has been called, any further operation on the view raises a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 [except
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
080 itself which can be called multiple times]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
829

The context management protocol can be used for a similar effect, using the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
900

New in version 3. 2

cast[format[ , shape]]

Cast a memoryview to a new format or shape. shape defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
082, which means that the result view will be one-dimensional. The return value is a new memoryview, but the buffer itself is not copied. Supported casts are 1D -> C- contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 syntax. One of the formats must be a byte format [‘B’, ‘b’ or ‘c’]. The byte length of the result must be the same as the original length

Cast 1D/long to 1D/unsigned bytes

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901

Truyền 1D/byte không dấu thành 1D/char

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902

Cast 1D/bytes to 3D/ints to 1D/signed char

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
903

Cast 1D/unsigned long to 2D/unsigned long

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
904

New in version 3. 3

Changed in version 3. 5. The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available

obj

The underlying object of the memoryview

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
905

New in version 3. 3

nbytes

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
084. This is the amount of space in bytes that the array would use in a contiguous representation. It is not necessarily equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
085

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
906

mảng nhiều chiều

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
907

New in version 3. 3

chỉ đọc

Một bool cho biết bộ nhớ có ở chế độ chỉ đọc hay không

định dạng

Một chuỗi chứa định dạng [theo kiểu mô-đun

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058] cho từng thành phần trong dạng xem. Một chế độ xem bộ nhớ có thể được tạo từ các trình xuất với các chuỗi định dạng tùy ý, nhưng một số phương thức [e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
064] bị giới hạn ở các định dạng phần tử đơn gốc

Đã thay đổi trong phiên bản 3. 3. định dạng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
088 hiện được xử lý theo cú pháp mô-đun cấu trúc. Điều này có nghĩa là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
089.

kích thước mặt hàng

Kích thước tính bằng byte của từng phần tử của memoryview

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908

ndim

Một số nguyên cho biết có bao nhiêu chiều của một mảng nhiều chiều mà bộ nhớ đại diện

hình dạng

Một bộ số nguyên có độ dài bằng _______0090 tạo ra hình dạng của bộ nhớ dưới dạng một mảng N chiều

Đã thay đổi trong phiên bản 3. 3. Một bộ trống thay vì

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 khi ndim = 0.

sải chân

Một bộ số nguyên có độ dài

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
090 cung cấp kích thước tính bằng byte để truy cập từng phần tử cho từng chiều của mảng

Đã thay đổi trong phiên bản 3. 3. Một bộ trống thay vì

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 khi ndim = 0.

độ lệch con

Được sử dụng nội bộ cho các mảng kiểu PIL. Giá trị chỉ là thông tin

c_contiguous

Một bool cho biết liệu bộ nhớ có phải là C- tiếp giáp .

New in version 3. 3

f_contiguous

Một bool cho biết bộ nhớ có phải là Fortran hay không tiếp giáp .

New in version 3. 3

tiếp giáp

Một bool cho biết liệu bộ nhớ có liền kề .

New in version 3. 3

Loại tập hợp —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470¶

Đối tượng tập hợp là một tập hợp không theo thứ tự các đối tượng có thể băm riêng biệt. Các ứng dụng phổ biến bao gồm kiểm tra tư cách thành viên, loại bỏ các bản sao khỏi chuỗi và tính toán các phép toán như giao, hợp, hiệu và hiệu đối xứng. [Đối với các vùng chứa khác, hãy xem các lớp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 tích hợp sẵn và mô-đun
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
099. ]

Giống như các bộ sưu tập khác, bộ hỗ trợ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
100,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
101 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
102. Là một tập hợp không có thứ tự, các tập hợp không ghi vị trí phần tử hoặc thứ tự chèn. Theo đó, các bộ không hỗ trợ lập chỉ mục, cắt hoặc hành vi giống như trình tự khác

Hiện tại có hai loại bộ tích hợp sẵn,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470. Loại
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 có thể thay đổi — có thể thay đổi nội dung bằng các phương pháp như
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
106 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7301. Vì nó có thể thay đổi nên nó không có giá trị băm và không thể được sử dụng làm khóa từ điển hoặc làm thành phần của tập hợp khác. Loại
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 là bất biến và có thể băm — không thể thay đổi nội dung của nó sau khi được tạo; .

Ví dụ: có thể tạo các tập hợp không trống [không phải tập hợp cố định] bằng cách đặt danh sách các phần tử được phân tách bằng dấu phẩy trong dấu ngoặc nhọn.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
109, ngoài hàm tạo
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469

Các hàm tạo cho cả hai lớp hoạt động như nhau

lớp bộ[[có thể lặp lại]]class frozenset[[iterable]]

Trả về một đối tượng set hoặc freezeset mới có các phần tử được lấy từ iterable. Các phần tử của tập hợp phải có thể băm được . Để đại diện cho các tập hợp, các tập hợp bên trong phải là ____16470 đối tượng. Nếu iterable không được chỉ định, một bộ trống mới được trả về.

Các bộ có thể được tạo bằng nhiều cách

  • Sử dụng danh sách các phần tử được phân tách bằng dấu phẩy trong dấu ngoặc nhọn.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    109

  • Sử dụng một bộ hiểu.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    113

  • Sử dụng hàm tạo kiểu.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    51,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    115,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    116

Các trường hợp của

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 cung cấp các thao tác sau

[các] ống kính

Trả về số phần tử trong tập hợp s [số lượng của s]

x in s

Kiểm tra x cho tư cách thành viên trong s

x không vào s

Kiểm tra x cho người không phải là thành viên trong s

isdisjoint[other]

Trả về

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 nếu tập hợp không có phần tử nào chung với tập hợp khác. Các tập hợp là rời nhau khi và chỉ khi giao của chúng là tập hợp rỗng

tập hợp con[khác]set 6 120

issuperset[other]set >= other

Kiểm tra xem mọi phần tử trong tập hợp khác có nằm trong tập hợp không

đặt > khác

Kiểm tra xem tập hợp này có phải là tập hợp lớn nhất của tập hợp khác hay không, nghĩa là,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
121

công đoàn[*những người khác]set | khác . .

Trả về một tập hợp mới với các phần tử từ tập hợp và tất cả các phần tử khác

giao lộ[*các ngã tư khác]set & other & ...

Trả về một tập hợp mới với các phần tử chung cho tập hợp và tất cả các phần tử khác

sự khác biệt[*khác]set - other - ...

Trả về một tập hợp mới với các phần tử trong tập hợp không có trong các phần tử khác

symmetric_difference[khác]set ^ other

Trả về một tập hợp mới có các phần tử trong tập hợp này hoặc tập hợp khác nhưng không phải cả hai

bản sao[]

Trả lại một bản sao nông của tập hợp

Lưu ý, các phiên bản không phải toán tử của các phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
122,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
123,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
124,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
125,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
126 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
127 sẽ chấp nhận bất kỳ lần lặp nào làm đối số. Ngược lại, các đối tác dựa trên toán tử của chúng yêu cầu các đối số của chúng được đặt. Điều này loại bỏ các cấu trúc dễ bị lỗi như
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
128 để có thể đọc dễ dàng hơn
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
129

Cả

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 đều hỗ trợ thiết lập so sánh. Hai tập hợp bằng nhau khi và chỉ khi mọi phần tử của mỗi tập hợp đều chứa trong tập hợp kia [mỗi tập hợp này là tập con của tập hợp kia]. Một tập hợp nhỏ hơn tập hợp khác khi và chỉ khi tập hợp đầu tiên là tập hợp con thực sự của tập hợp thứ hai [là tập hợp con, nhưng không bằng nhau]. Một tập hợp lớn hơn tập hợp khác khi và chỉ khi tập hợp đầu tiên là tập hợp lớn nhất của tập hợp thứ hai [là tập hợp phụ, nhưng không bằng nhau]

Các phiên bản của

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 được so sánh với các phiên bản của
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 dựa trên các thành viên của chúng. Ví dụ:
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
134 trả về
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
136 cũng vậy

So sánh tập hợp con và đẳng thức không tổng quát hóa thành hàm sắp xếp tổng. Ví dụ: hai tập hợp khác nhau bất kỳ không rỗng thì không bằng nhau và không phải là tập con của nhau, vì vậy tất cả các giá trị sau trả về

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
138,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
139 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
140

Vì các tập hợp chỉ xác định thứ tự một phần [mối quan hệ tập hợp con], nên đầu ra của phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
141 không được xác định cho danh sách các tập hợp

Các thành phần của tập hợp, như khóa từ điển, phải có thể băm .

Các hoạt động nhị phân kết hợp các phiên bản

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 với
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 trả về loại toán hạng đầu tiên. Ví dụ.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
144 trả về một thể hiện của
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470

Bảng sau đây liệt kê các hoạt động có sẵn cho

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 không áp dụng cho các trường hợp bất biến của
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470

cập nhật[*khác]set |= khác . .

Cập nhật tập hợp, thêm các phần tử từ tất cả các phần tử khác

intersection_update[*khác]set &= other & ...

Cập nhật tập hợp, chỉ giữ lại các phần tử được tìm thấy trong đó và tất cả các phần tử khác

difference_update[*khác]set -= other | .

Cập nhật tập hợp, loại bỏ các phần tử được tìm thấy trong các tập hợp khác

symmetric_difference_update[khác]set ^= other

Cập nhật tập hợp, chỉ giữ lại các phần tử được tìm thấy trong một trong hai tập hợp chứ không phải trong cả hai

add[elem]

Thêm phần tử elem vào tập hợp

xóa[elem]

Xóa phần tử elem khỏi tập hợp. Tăng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148 nếu elem không có trong tập hợp

loại bỏ[elem]

Xóa phần tử elem khỏi tập hợp nếu có

pop[]

Xóa và trả về một phần tử tùy ý khỏi tập hợp. Tăng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148 nếu bộ trống

xóa[]

Xóa tất cả các phần tử khỏi tập hợp

Lưu ý, các phiên bản không phải toán tử của các phương thức ________ 0150, ________ 0151, ________ 0152 và ________ 0153 sẽ chấp nhận bất kỳ lần lặp nào làm đối số

Note, the elem argument to the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
900,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7301, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
156 methods may be a set. Để hỗ trợ tìm kiếm một bộ đóng băng tương đương, một bộ tạm thời được tạo từ elem

Các loại ánh xạ —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468¶

A ánh xạ đối tượng ánh xạ các giá trị có thể băm thành các đối tượng tùy ý. Ánh xạ là các đối tượng có thể thay đổi. Hiện tại chỉ có một loại ánh xạ tiêu chuẩn, từ điển. [Đối với các bộ chứa khác, hãy xem các lớp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 tích hợp sẵn và mô-đun
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
099. ]

Khóa của từ điển gần như là giá trị tùy ý. Values that are not hashable , that is, values containing lists, dictionaries or other mutable types [that are compared by value rather than by object identity] may not be used as keys. Values that compare equal [such as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
163, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56] can be used interchangeably to index the same dictionary entry.

class dict[**kwargs]class dict[mapping , **kwargs]class dict[iterable , **kwargs]

Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword arguments

Dictionaries can be created by several means

  • Use a comma-separated list of

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    165 pairs within braces.
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    166 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    167

  • Use a dict comprehension.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    50,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    169

  • Use the type constructor.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    170,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    171,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    172

Nếu không có đối số vị trí nào được cung cấp, một từ điển trống sẽ được tạo. If a positional argument is given and it is a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise, the positional argument must be an iterable object. Each item in the iterable must itself be an iterable with exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created from the positional argument. If a key being added is already present, the value from the keyword argument replaces the value from the positional argument

Để minh họa, tất cả các ví dụ sau đều trả về một từ điển bằng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
173

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
909

Việc cung cấp các đối số từ khóa như trong ví dụ đầu tiên chỉ hoạt động đối với các khóa là mã định danh Python hợp lệ. Mặt khác, bất kỳ khóa hợp lệ nào cũng có thể được sử dụng

Đây là các hoạt động mà từ điển hỗ trợ [và do đó, các loại ánh xạ tùy chỉnh cũng sẽ hỗ trợ]

danh sách[d]

Trả về danh sách tất cả các khóa được sử dụng trong từ điển d

cho mượn]

Trả về số mục trong từ điển d

đ[phím]

Trả lại mục của d bằng phím key. Tăng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148 nếu khóa không có trong bản đồ

Nếu một lớp con của dict định nghĩa một phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
175 và không có khóa, thì hoạt động
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
176 gọi phương thức đó với đối số là key key. Hoạt động
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
176 sau đó trả về hoặc tăng bất cứ thứ gì được trả lại hoặc tăng bởi lệnh gọi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
178. Không có hoạt động hoặc phương thức nào khác gọi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
175. Nếu
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
175 không được xác định, thì
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148 được nâng lên.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
175 phải là một phương thức;

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
00

Ví dụ trên cho thấy một phần của việc triển khai

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
183. Một phương pháp
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
184 khác được sử dụng bởi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
185

d[key] = giá trị

Đặt

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
176 thành giá trị

del d[key]

Xóa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
176 khỏi d. Tăng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148 nếu khóa không có trong bản đồ

phím vào d

Trả lại

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 nếu d có khóa chính, ngược lại
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

phím không vào d

Tương đương với

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
191

lặp đi lặp lại [d]

Trả lại một trình vòng lặp qua các khóa của từ điển. Đây là lối tắt cho

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
192

xóa[]

Xóa tất cả các mục khỏi từ điển

bản sao[]

Trả lại một bản sao nông của từ điển

phương thức lớp từ khóa[có thể lặp lại[, value]]

Tạo một từ điển mới với các khóa từ iterable và các giá trị được đặt thành giá trị

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
193 là một phương thức lớp trả về một từ điển mới. giá trị mặc định là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31. Tất cả các giá trị chỉ tham chiếu đến một thể hiện duy nhất, do đó, thông thường giá trị là một đối tượng có thể thay đổi chẳng hạn như một danh sách trống không có ý nghĩa gì. Để nhận các giá trị riêng biệt, hãy sử dụng hiểu chính tả thay thế.

lấy[khóa[ , default]]

Trả về giá trị cho khóa nếu khóa có trong từ điển, nếu không thì mặc định. Nếu giá trị mặc định không được cung cấp, nó sẽ mặc định là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, do đó phương thức này không bao giờ tăng giá trị
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148

items[]

Trả về chế độ xem mới cho các mục của từ điển [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
197 cặp]. Xem tài liệu về đối tượng xem .

phím[]

Trả lại chế độ xem mới cho các khóa của từ điển. Xem tài liệu về đối tượng xem .

bật[phím[ , default]]

Nếu khóa nằm trong từ điển, hãy xóa nó và trả về giá trị của nó, nếu không thì trả về giá trị mặc định. Nếu giá trị mặc định không được cung cấp và khóa không có trong từ điển, thì một số

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148 sẽ xuất hiện

popitem[]

Xóa và trả về cặp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
197 từ từ điển. Các cặp được trả lại theo thứ tự LIFO

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
200 rất hữu ích để lặp lại triệt để một từ điển, như thường được sử dụng trong các thuật toán tập hợp. Nếu từ điển trống, gọi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
200 sẽ tăng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148

Đã thay đổi trong phiên bản 3. 7. Đơn hàng LIFO hiện đã được đảm bảo. Trong các phiên bản trước,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
200 sẽ trả về một cặp khóa/giá trị tùy ý.

đảo ngược[d]

Trả về một trình vòng lặp đảo ngược trên các khóa của từ điển. Đây là lối tắt cho

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
204

New in version 3. 8

setdefault[key[ , default]]

Nếu khóa nằm trong từ điển, hãy trả về giá trị của nó. Nếu không, hãy chèn khóa có giá trị mặc định và trả về giá trị mặc định. mặc định mặc định là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

cập nhật[[khác]]

Cập nhật từ điển với các cặp khóa/giá trị từ khác, ghi đè lên các khóa hiện có. Trả lại

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
150 chấp nhận một đối tượng từ điển khác hoặc một cặp khóa/giá trị có thể lặp lại [dưới dạng bộ dữ liệu hoặc các lần lặp khác có độ dài hai]. If keyword arguments are specified, the dictionary is then updated with those key/value pairs.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
208

values[]

Return a new view of the dictionary’s values. See the documentation of view objects .

An equality comparison between one

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
209 view and another will always return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. This also applies when comparing
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
209 to itself

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
01

d . other

Create a new dictionary with the merged keys and values of d and other, which must both be dictionaries. The values of other take priority when d and other share keys

New in version 3. 9

d . = other

Update the dictionary d with keys and values from other, which may be either a mapping or an iterable of key/value pairs. The values of other take priority when d and other share keys.

New in version 3. 9

Dictionaries compare equal if and only if they have the same

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
197 pairs [regardless of ordering]. Order comparisons [‘’] raise
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88.

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after deletion are inserted at the end

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
02

Changed in version 3. 7. Dictionary order is guaranteed to be insertion order. This behavior was an implementation detail of CPython from 3. 6.

Dictionaries and dictionary views are reversible

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
03

Changed in version 3. 8. Từ điển hiện có thể đảo ngược.

See also

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
214 can be used to create a read-only view of a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468

Dictionary view objects¶

The objects returned by

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
216,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
209 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
218 are view objects. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these changes

Dictionary views can be iterated over to yield their respective data, and support membership tests

len[dictview]

Return the number of entries in the dictionary

iter[dictview]

Return an iterator over the keys, values or items [represented as tuples of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
197] in the dictionary

Keys and values are iterated over in insertion order. This allows the creation of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
220 pairs using
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
221.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
222. Another way to create the same list is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
223

Iterating views while adding or deleting entries in the dictionary may raise a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
224 or fail to iterate over all entries

Changed in version 3. 7. Dictionary order is guaranteed to be insertion order.

x in dictview

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if x is in the underlying dictionary’s keys, values or items [in the latter case, x should be a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
197 tuple]

reversed[dictview]

Return a reverse iterator over the keys, values or items of the dictionary. The view will be iterated in reverse order of the insertion

Changed in version 3. 8. Dictionary views are now reversible.

dictview. mapping

Return a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
214 that wraps the original dictionary to which the view refers

New in version 3. 10

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
197 pairs are unique and hashable, then the items view is also set-like. [Values views are not treated as set-like since the entries are generally not unique. ] For set-like views, all of the operations defined for the abstract base class
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
229 are available [for example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
78,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
232]

An example of dictionary view usage

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
04

Context Manager Types¶

Python’s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement supports the concept of a runtime context defined by a context manager. This is implemented using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement body is executed and exited when the statement ends

contextmanager. __enter__[]

Enter the runtime context and return either this object or another object related to the runtime context. The value returned by this method is bound to the identifier in the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
234 clause of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statements using this context manager

An example of a context manager that returns itself is a file object . File objects return themselves from __enter__[] to allow

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
236 to be used as the context expression in a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement.

An example of a context manager that returns a related object is the one returned by

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
238. These managers set the active decimal context to a copy of the original decimal context and then return the copy. This allows changes to be made to the current decimal context in the body of the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement without affecting code outside the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement

contextmanager. __exit__[exc_type , exc_val , exc_tb]

Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed. If an exception occurred while executing the body of the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement, the arguments contain the exception type, value and traceback information. Otherwise, all three arguments are
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

Returning a true value from this method will cause the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement to suppress the exception and continue execution with the statement immediately following the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement. Otherwise the exception continues propagating after this method has finished executing. Exceptions that occur during execution of this method will replace any exception that occurred in the body of the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement

The exception passed in should never be reraised explicitly - instead, this method should return a false value to indicate that the method completed successfully and does not want to suppress the raised exception. This allows context management code to easily detect whether or not an

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
246 method has actually failed

Python định nghĩa một số trình quản lý ngữ cảnh để hỗ trợ đồng bộ hóa luồng dễ dàng, đóng nhanh tệp hoặc các đối tượng khác và thao tác đơn giản hơn đối với ngữ cảnh số học thập phân đang hoạt động. The specific types are not treated specially beyond their implementation of the context management protocol. See the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
247 module for some examples

Python’s generator s and the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248 decorator provide a convenient way to implement these protocols. If a generator function is decorated with the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248 decorator, it will return a context manager implementing the necessary
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
250 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
246 methods, rather than the iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C API. Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible

Type Annotation Types — Generic Alias , Union

The core built-in types for type annotations are Generic Alias and Union .

Generic Alias Type¶

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 objects are generally created by subscripting a class. They are most often used with container classes , such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468. For example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
255 is a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 object created by subscripting the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393 class with the argument
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 objects are intended primarily for use with type annotations .

Note

Nói chung, chỉ có thể đăng ký một lớp nếu lớp đó triển khai phương thức đặc biệt

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
260

A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 object acts as a proxy for a generic type , implementing parameterized generics.

For a container class, the argument[s] supplied to a subscription of the class may indicate the type[s] of the elements an object contains. For example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
262 can be used in type annotations to signify a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 in which all the elements are of type
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423.

For a class which defines

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
260 but is not a container, the argument[s] supplied to a subscription of the class will often indicate the return type[s] of one or more methods defined on an object. For example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
266 can be used on both the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 data type and the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 data type

  • If

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    269,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    982 will be a re. Match object where the return values of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    271 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    272 will both be of type
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6422. We can represent this kind of object in type annotations with the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    252
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    275.

  • If

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    276, [note the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8247 for
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6423],
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6331 will also be an instance of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    280, but the return values of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    281 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    282 will both be of type
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6423. In type annotations, we would represent this variety of re. Match objects with
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    284.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 objects are instances of the class
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
286, which can also be used to create
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 objects directly

T[X, Y, . ]

Creates a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 representing a type
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
289 parameterized by types X, Y, and more depending on the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
289 used. For example, a function expecting a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393 containing
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902 elements

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
05

Another example for mapping objects, using a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468, which is a generic type expecting two type parameters representing the key type and the value type. In this example, the function expects a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468 with keys of type
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 and values of type
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
06

The builtin functions

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
297 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
298 do not accept
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 types for their second argument

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
07

Thời gian chạy Python không thực thi chú thích loại . This extends to generic types and their type parameters. When creating a container object from a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252, the elements in the container are not checked against their type. For example, the following code is discouraged, but will run without errors.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
08

Hơn nữa, các tham số loại được tham số hóa xóa các tham số loại trong quá trình tạo đối tượng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
09

Gọi

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
32 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33 trên một chung hiển thị loại được tham số hóa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
10

Phương pháp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7769 của các thùng chứa chung sẽ đưa ra một ngoại lệ để không cho phép các lỗi như
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
304

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
11

Tuy nhiên, các biểu thức như vậy hợp lệ khi sử dụng biến loại . Chỉ mục phải có nhiều phần tử bằng với số mục biến loại trong đối tượng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 của đối tượng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
306.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
12

Các lớp học chung tiêu chuẩn¶

Các lớp thư viện tiêu chuẩn sau đây hỗ trợ các generic được tham số hóa. danh sách này là không đầy đủ

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6394

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6393

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6468

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6469

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6470

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    312

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    313

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    185

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    315

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    183

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    317

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    318

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    319

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    320

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    321

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    322

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    323

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    324

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    325

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    326

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    327

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    328

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    329

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    229

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    331

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    332

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    333

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6396

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6472

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    336

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    337

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    338

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    339

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    340

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    341

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    342

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    343

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    344

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    345

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    346

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    347

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    348

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    349

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    350

  • re. Pattern

  • re. Match

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    351

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    352

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    353

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    214

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    355

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    356

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    357

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    358

Special Attributes of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 objects¶

All parameterized generics implement special read-only attributes

genericalias. __origin__

This attribute points at the non-parameterized generic class

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
13

genericalias. __args__

This attribute is a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 [possibly of length 1] of generic types passed to the original
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
260 of the generic class

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
14

genericalias. __parameters__

This attribute is a lazily computed tuple [possibly empty] of unique type variables found in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
306

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
15

Note

A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 object with
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
364 parameters may not have correct
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
365 after substitution because
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
364 is intended primarily for static type checking

genericalias. __unpacked__

A boolean that is true if the alias has been unpacked using the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6400 operator [see
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
368]

New in version 3. 11

See also

PEP 484 - Type Hints

Giới thiệu khung của Python cho các chú thích loại

PEP 585 - Type Hinting Generics In Standard Collections

Introducing the ability to natively parameterize standard-library classes, provided they implement the special class method

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
260

Generics , user-defined generics and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
370

Documentation on how to implement generic classes that can be parameterized at runtime and understood by static type-checkers

New in version 3. 9

Union Type¶

Đối tượng hợp lưu giữ giá trị của phép toán

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
371 [theo bit hoặc] trên nhiều đối tượng loại . Các loại này chủ yếu dành cho chú thích loại . The union type expression enables cleaner type hinting syntax compared to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
372.

X . Y . .

Defines a union object which holds types X, Y, and so forth.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
373 means either X or Y. Nó tương đương với
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
374. Ví dụ: hàm sau mong đợi một đối số kiểu
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
16

union_object == khác

Các đối tượng kết hợp có thể được kiểm tra sự bình đẳng với các đối tượng kết hợp khác. Chi tiết

  • Liên minh công đoàn bị san bằng

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    17

  • Các loại dư thừa được loại bỏ

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    18

  • Khi so sánh các công đoàn, thứ tự bị bỏ qua

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    19

  • Nó tương thích với

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    372

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    20

  • Các loại tùy chọn có thể được viết dưới dạng hợp nhất với

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    21

isinstance[obj, union_object]issubclass[obj, union_object]

Các cuộc gọi đến

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
297 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
298 cũng được hỗ trợ với một đối tượng liên kết

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
22

Tuy nhiên, không thể sử dụng các đối tượng hợp có chứa các tổng quát được tham số hóa .

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
23

Loại tiếp xúc với người dùng cho đối tượng hợp nhất có thể được truy cập từ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
381 và được sử dụng để kiểm tra
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
297. An object cannot be instantiated from the type

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
24

Note

Phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
383 cho các đối tượng kiểu đã được thêm vào để hỗ trợ cú pháp
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
373. Nếu một siêu dữ liệu triển khai
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
383, Liên minh có thể ghi đè lên nó

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
25

See also

PEP 604 – PEP đề xuất cú pháp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
373 và kiểu Union

New in version 3. 10

Các loại tích hợp khác¶

Trình thông dịch hỗ trợ một số loại đối tượng khác. Hầu hết trong số này chỉ hỗ trợ một hoặc hai thao tác

Mô-đun¶

Hoạt động đặc biệt duy nhất trên một mô-đun là truy cập thuộc tính.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
387, trong đó m là một mô-đun và tên truy cập vào tên được xác định trong bảng ký hiệu của m. Thuộc tính mô-đun có thể được gán cho. [Lưu ý rằng câu lệnh
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
388 nói đúng ra không phải là một thao tác trên đối tượng mô-đun;
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
389 không yêu cầu đối tượng mô-đun có tên foo tồn tại, thay vào đó, nó yêu cầu định nghĩa [bên ngoài] cho mô-đun có tên foo ở đâu đó. ]

Một thuộc tính đặc biệt của mọi mô-đun là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
390. Đây là từ điển chứa bảng ký hiệu của module. Việc sửa đổi từ điển này sẽ thực sự thay đổi bảng ký hiệu của mô-đun, nhưng không thể gán trực tiếp cho thuộc tính
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
390 [bạn có thể viết
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
392, định nghĩa
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
393 là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55, nhưng bạn không thể viết
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
395]. Sửa đổi trực tiếp
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
390 không được khuyến nghị

Các mô-đun được tích hợp trong trình thông dịch được viết như thế này.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
397. Nếu được tải từ một tệp, chúng được viết là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
398

Lớp và thực thể lớp¶

Xem Đối tượng, giá trị và loạiĐịnh nghĩa lớp .

Chức năng¶

Các đối tượng hàm được tạo bởi các định nghĩa hàm. Thao tác duy nhất trên một đối tượng hàm là gọi nó.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
399

Thực sự có hai hương vị của các đối tượng chức năng. chức năng tích hợp và chức năng do người dùng xác định. Cả hai đều hỗ trợ cùng một thao tác [để gọi hàm], nhưng cách thực hiện khác nhau, do đó các loại đối tượng khác nhau

Xem Định nghĩa hàm để biết thêm thông tin.

Phương pháp¶

Phương thức là các hàm được gọi bằng cách sử dụng ký hiệu thuộc tính. Có hai hương vị. các phương thức tích hợp sẵn [chẳng hạn như

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
400 trong danh sách] và các phương thức thể hiện của lớp. Các phương thức tích hợp được mô tả với các loại hỗ trợ chúng

Nếu bạn truy cập một phương thức [một hàm được xác định trong không gian tên lớp] thông qua một thể hiện, bạn sẽ nhận được một đối tượng đặc biệt. một đối tượng phương thức ràng buộc [còn gọi là phương thức thể hiện]. Khi được gọi, nó sẽ thêm đối số

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
401 vào danh sách đối số. Các phương thức ràng buộc có hai thuộc tính chỉ đọc đặc biệt.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
402 là đối tượng mà phương thức hoạt động và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
403 là hàm thực thi phương thức. Gọi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
404 hoàn toàn tương đương với gọi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
405

Giống như các đối tượng hàm, các đối tượng phương thức ràng buộc hỗ trợ nhận các thuộc tính tùy ý. Tuy nhiên, vì các thuộc tính của phương thức thực sự được lưu trữ trên đối tượng chức năng cơ bản [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
406], nên việc đặt các thuộc tính của phương thức trên các phương thức bị ràng buộc là không được phép. Cố gắng đặt một thuộc tính trên một phương thức sẽ dẫn đến việc tăng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
407. Để đặt một thuộc tính phương thức, bạn cần đặt nó một cách rõ ràng trên đối tượng hàm bên dưới

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
26

Xem Hệ thống phân cấp loại tiêu chuẩn để biết thêm thông tin.

Đối tượng mã¶

Các đối tượng mã được triển khai sử dụng để biểu thị mã Python thực thi được "biên dịch giả" chẳng hạn như thân hàm. Chúng khác với các đối tượng chức năng vì chúng không chứa tham chiếu đến môi trường thực thi toàn cầu của chúng. Các đối tượng mã được trả về bởi hàm

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
408 tích hợp và có thể được trích xuất từ ​​các đối tượng hàm thông qua thuộc tính
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
409 của chúng. Xem thêm mô-đun
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
410

Việc truy cập vào

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
409 sẽ tạo ra một sự kiện kiểm tra
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
412 với các đối số
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
413 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
414.

Một đối tượng mã có thể được thực thi hoặc đánh giá bằng cách chuyển đối tượng đó [thay vì chuỗi nguồn] tới các hàm dựng sẵn

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
415 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
416

Xem Hệ thống phân cấp loại tiêu chuẩn để biết thêm thông tin.

Nhập đối tượng¶

Loại đối tượng đại diện cho các loại đối tượng khác nhau. Loại đối tượng được truy cập bằng chức năng tích hợp sẵn

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
417. Không có thao tác đặc biệt nào trên các loại. Mô-đun tiêu chuẩn
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
418 xác định tên cho tất cả các loại tích hợp tiêu chuẩn

Các loại được viết như thế này.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
419

Đối tượng Null¶

Đối tượng này được trả về bởi các hàm không trả về giá trị một cách rõ ràng. Nó không hỗ trợ các hoạt động đặc biệt. Có chính xác một đối tượng null, tên là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 [tên dựng sẵn].
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
421 tạo ra cùng một singleton

Nó được viết là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

Đối tượng Dấu chấm lửng¶

Đối tượng này thường được sử dụng bằng cách cắt lát [xem Cắt lát ]. Nó không hỗ trợ các hoạt động đặc biệt. Có chính xác một đối tượng dấu chấm lửng, tên là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
423 [tên tích hợp].
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
424 tạo ra đĩa đơn
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
423.

Nó được viết là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
423 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
427

Đối tượng không được triển khai¶

Đối tượng này được trả về từ phép so sánh và phép toán nhị phân khi chúng được yêu cầu thao tác trên các loại mà chúng không hỗ trợ. Xem So sánh để biết thêm thông tin. Có chính xác một đối tượng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
428.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
429 tạo ra cá thể đơn lẻ.

Nó được viết là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
428

Giá trị Boolean¶

Giá trị Boolean là hai đối tượng hằng số

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56. Chúng được sử dụng để biểu thị giá trị thật [mặc dù các giá trị khác cũng có thể được coi là sai hoặc đúng]. Trong ngữ cảnh số [ví dụ: khi được sử dụng làm đối số cho toán tử số học], chúng hoạt động giống như các số nguyên 0 và 1 tương ứng. Có thể sử dụng hàm tích hợp sẵn
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
433 để chuyển đổi bất kỳ giá trị nào thành Boolean, nếu giá trị đó có thể được hiểu là giá trị thực [xem phần Kiểm tra giá trị thực above].

Chúng được viết lần lượt là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56

Đối tượng bên trong¶

Xem Hệ thống phân cấp loại tiêu chuẩn để biết thông tin này. Nó mô tả các đối tượng khung ngăn xếp, đối tượng truy nguyên và đối tượng lát.

Thuộc tính đặc biệt¶

Việc triển khai thêm một vài thuộc tính chỉ đọc đặc biệt cho một số loại đối tượng, nơi chúng có liên quan. Một số trong số này không được báo cáo bởi hàm tích hợp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
436

đối tượng. __dict__

Từ điển hoặc đối tượng ánh xạ khác được sử dụng để lưu trữ các thuộc tính [có thể ghi] của đối tượng

ví dụ. __class__

Lớp mà một thể hiện của lớp thuộc về

lớp. __base__

Bộ các lớp cơ sở của một đối tượng lớp

định nghĩa. __name__

Tên của lớp, hàm, phương thức, bộ mô tả hoặc thể hiện của trình tạo

định nghĩa. __qualname__

The tên đủ điều kiện của lớp, hàm, phương thức, bộ mô tả hoặc thể hiện trình tạo.

New in version 3. 3

lớp. __mro__

Thuộc tính này là một bộ các lớp được xem xét khi tìm kiếm các lớp cơ sở trong quá trình phân giải phương thức

lớp. mro[]

Phương thức này có thể được ghi đè bởi một siêu dữ liệu để tùy chỉnh thứ tự phân giải phương thức cho các phiên bản của nó. Nó được gọi khi khởi tạo lớp và kết quả của nó được lưu trữ trong

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
437

lớp. __phân lớp__[]

Mỗi lớp giữ một danh sách các tham chiếu yếu đến các lớp con trực tiếp của nó. Phương thức này trả về một danh sách tất cả các tham chiếu vẫn còn tồn tại. Danh sách theo thứ tự định nghĩa. Ví dụ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
27

Giới hạn độ dài chuyển đổi chuỗi số nguyên¶

CPython có giới hạn toàn cầu cho việc chuyển đổi giữa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 để giảm thiểu các cuộc tấn công từ chối dịch vụ. Giới hạn này chỉ áp dụng cho cơ số thập phân hoặc cơ số không phải lũy thừa hai. Chuyển đổi thập lục phân, bát phân và nhị phân là không giới hạn. Giới hạn có thể được cấu hình

Loại ________ 6901 trong Python là một số có độ dài tùy ý được lưu trữ ở dạng nhị phân [thường được gọi là “bignum”]. Không tồn tại thuật toán nào có thể chuyển đổi một chuỗi thành một số nguyên nhị phân hoặc một số nguyên nhị phân thành một chuỗi trong thời gian tuyến tính, trừ khi cơ số là lũy thừa của 2. Ngay cả các thuật toán được biết đến nhiều nhất cho cơ số 10 cũng có độ phức tạp bậc hai. Chuyển đổi một giá trị lớn chẳng hạn như

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
441 có thể mất hơn một giây trên CPU nhanh

Giới hạn kích thước chuyển đổi cung cấp một cách thiết thực để tránh CVE-2020-10735

Giới hạn được áp dụng cho số ký tự chữ số trong chuỗi đầu vào hoặc đầu ra khi sử dụng thuật toán chuyển đổi phi tuyến tính. Dấu gạch dưới và dấu không được tính vào giới hạn

Khi một hoạt động sẽ vượt quá giới hạn, một

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 được nâng lên

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
28

Giới hạn mặc định là 4300 chữ số như được cung cấp trong

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
443. Giới hạn thấp nhất có thể được định cấu hình là 640 chữ số như được cung cấp trong
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
444

xác minh

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
29

New in version 3. 11

API bị ảnh hưởng¶

Giới hạn chỉ áp dụng cho các chuyển đổi có khả năng chậm giữa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    448 với cơ sở mặc định 10

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    449 cho tất cả các cơ số không phải là lũy thừa của 2

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    450

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    451

  • bất kỳ chuyển đổi chuỗi nào khác sang cơ số 10, ví dụ:

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    452,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    453 hoặc
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    454

Các giới hạn không áp dụng cho các hàm có thuật toán tuyến tính

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    449 với cơ số 2, 4, 8, 16 hoặc 32

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    456 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    457

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    458,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    459,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    460

  • Ngôn ngữ nhỏ đặc tả định dạng cho các số hex, bát phân và nhị phân.

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6422 đến
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    902

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6422 đến
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    908

Định cấu hình giới hạn¶

Trước khi Python khởi động, bạn có thể sử dụng biến môi trường hoặc cờ dòng lệnh của trình thông dịch để định cấu hình giới hạn

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    465, e. g.
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    466 để đặt giới hạn thành 640 hoặc
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    467 để tắt giới hạn

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    468, e. g.
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    469

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    470 chứa giá trị của
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    465 hoặc
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    468. Nếu cả tùy chọn env var và tùy chọn
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    473 được đặt, thì tùy chọn
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    473 sẽ được ưu tiên. Giá trị -1 cho biết rằng cả hai đều không được đặt, do đó, giá trị của
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    443 đã được sử dụng trong quá trình khởi tạo

Từ mã, bạn có thể kiểm tra giới hạn hiện tại và đặt giới hạn mới bằng cách sử dụng các API

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
476 này

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    477 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    478 là một công cụ getter và setter cho giới hạn toàn phiên dịch. Phiên dịch viên phụ có giới hạn riêng của họ

Thông tin về mặc định và tối thiểu có thể được tìm thấy trong

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
479

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    443 là giới hạn mặc định được biên dịch sẵn

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    444 là giá trị thấp nhất được chấp nhận cho giới hạn [khác 0 sẽ vô hiệu hóa nó]

New in version 3. 11

thận trọng

Đặt giới hạn thấp có thể dẫn đến sự cố. Mặc dù hiếm gặp, mã tồn tại chứa các hằng số nguyên ở dạng thập phân trong nguồn của chúng vượt quá ngưỡng tối thiểu. Hệ quả của việc đặt giới hạn là mã nguồn Python chứa các số nguyên thập phân dài hơn giới hạn sẽ gặp lỗi trong quá trình phân tích cú pháp, thường là tại thời điểm khởi động hoặc thời điểm nhập hoặc thậm chí tại thời điểm cài đặt - bất kỳ lúc nào bản cập nhật

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
482 chưa tồn tại cho . Một giải pháp thay thế cho nguồn chứa các hằng số lớn như vậy là chuyển đổi chúng sang dạng thập lục phân
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6312 vì nó không có giới hạn

Kiểm tra ứng dụng của bạn kỹ lưỡng nếu bạn sử dụng giới hạn thấp. Đảm bảo các thử nghiệm của bạn chạy với giới hạn được đặt sớm thông qua môi trường hoặc cờ để nó áp dụng trong quá trình khởi động và thậm chí trong bất kỳ bước cài đặt nào có thể gọi Python để biên dịch trước nguồn

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
484 thành tệp
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
482

Cấu hình đề xuất¶

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
443 mặc định dự kiến ​​sẽ hợp lý cho hầu hết các ứng dụng. Nếu ứng dụng của bạn yêu cầu một giới hạn khác, hãy đặt giới hạn đó từ điểm vào chính của bạn bằng cách sử dụng mã bất khả tri của phiên bản Python vì các API này đã được thêm vào trong các bản phát hành bản vá bảo mật trong các phiên bản trước 3. 11

Example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
30

Nếu bạn cần tắt hoàn toàn, hãy đặt thành

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42

chú thích

1

Thông tin bổ sung về các phương pháp đặc biệt này có thể được tìm thấy trong Hướng dẫn tham khảo Python [ Tùy chỉnh cơ bản ].

2

Kết quả là, danh sách

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
488 được coi là bằng với
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
489 và tương tự đối với các bộ dữ liệu

3

Chúng phải có vì trình phân tích cú pháp không thể cho biết loại toán hạng

4[1,2,3,4]

Các ký tự viết hoa là những ký tự có thuộc tính danh mục chung là một trong số “Lu” [Chữ cái, chữ hoa], “Ll” [Chữ cái, chữ thường] hoặc “Lt” [Chữ cái, chữ hoa tiêu đề]

5[1,2]

Do đó, để chỉ định dạng một bộ dữ liệu, bạn nên cung cấp một bộ dữ liệu đơn có phần tử duy nhất là bộ dữ liệu được định dạng

Có bao nhiêu byte trong Python?

Thông thường, tám byte được sử dụng cho kiểu động Python.

Có bao nhiêu byte là một chuỗi Python?

Lưu ý rằng mỗi chuỗi trong Python cần thêm 49-80 byte bộ nhớ, nơi chuỗi lưu trữ thông tin bổ sung, chẳng hạn như hàm băm, độ dài, . Đó là lý do tại sao một chuỗi trống chiếm 49 byte bộ nhớ.

Làm cách nào để đọc byte trong Python?

bạn có thể sử dụng bin[ord['b']] . replace['b', ''] bin[] nó cung cấp cho bạn biểu diễn nhị phân với 'b' sau bit cuối cùng, bạn phải xóa nó. Ngoài ra, ord[] cung cấp cho bạn số ASCII cho ký tự được mã hóa char hoặc 8-bit/1 Byte.

Chủ Đề