Kết luận phương trình vô nghiệm

VnHocTap.com giới thiệu đến các em học sinh lớp 10 bài viết Giải và biện luận phương trình bậc nhất, nhằm giúp các em học tốt chương trình Toán 10.

Nội dung bài viết Giải và biện luận phương trình bậc nhất: Giải và biện luận phương trình bậc nhất. Phương pháp giải: a] a khác 0: Phương trình có một nghiệm duy nhất x = − b. b] a = 0 và b khác 0: Phương trình vô nghiệm. c] a = 0 và b = 0: Phương trình nghiệm đúng với mọi x. BÀI TẬP DẠNG 1. Ví dụ 1. Giải và biện luận phương trình sau theo tham số m. Ta xét các trường hợp sau đây: Trường hợp 1: Khi m khác ±1, ta có m2 − 1 khác 0 nên [2] có nghiệm. Đây là nghiệm duy nhất của phương trình. Trường hợp 2: Khi m = 1, phương trình [2] trở thành 0.x = 0. Phương trình này có nghiệm đúng với mọi số thực x nên phương trình [1] cũng có nghiệm đúng với mọi số thực x. Trường hợp 3: Khi m = −1, phương trình [2] trở thành 0.x = −4. Phương trình này vô nghiệm nên phương trình [1] cũng vô nghiệm. Kết luận: Với m khác ±1: [1] có nghiệm duy nhất x = 2. Với m = −1: [1] vô nghiệm. Với m = 1: [1] có vô số nghiệm. Ví dụ 2. Giải và biện luận phương trình 2x + a. Phương trình trên được viết lại dưới dạng. Trường hợp 1: Nếu a khác 0 thì [2] ⇔ x = 2a. Trường hợp 2: Nếu a = 0 thì [2] ⇔ 0.x = 0, phương trình có nghiệm đúng với mọi số thực x. Kết luận: Với a khác 0 và a khác ±2 thì phương trình có một nghiệm duy nhất x = 1. Với a = 0 thì phương trình có nghiệm đúng với mọi số thực x. Với a = ±2 thì phương trình đã cho vô nghiệm. Ví dụ 3. Tìm giá trị của tham số m để phương trình sau có tập hợp nghiệm là R. Phương trình đã cho viết dưới dạng [m3 + 1]x = m + 1 [2]. Do đó, phương trình [1] có tập nghiệm là R khi và chỉ khi phương trình [2] có tập nghiệm R ⇔ m3 + 1 = 0, m + 1 = 0 ⇔ m = −1. Vậy với m = −1 thì phương trình [1] có tập nghiệm là R. Ví dụ 4. Tìm giá trị tham số m để phương trình sau có nghiệm x > 2. Phương trình đã cho được viết lại dưới dạng x = 3m + 1. Phương trình [1] có nghiệm x > 2 khi và chỉ khi 3m + 1 > 2 ⇔ m > 1. Vậy m > 1 thỏa yêu cầu bài toán. BÀI TẬP TỰ LUYỆN. Bài 1. Giải và biện luận phương trình [m2 + 4]x − 3m = x − 3 [1]. Lời giải. Phương trình đã cho được viết lại dưới dạng [m2 + 3]x = 3m − 3 [2]. Vì m2 + 3 > 0, với mọi giá trị thực của m nên phương trình [2] có 1 nghiệm duy nhất là x = 3m − 3. Bài 2. Giải và biện luận phương trình m[x − 2m] = x + m + 2 [1]. Phương trình [1] được viết lại dưới dạng [m − 1]x = 2m2 + m + 2 [2]. Với m = 1, phương trình [2] trở thành 0.x = 5. Điều này vô lí, phương trình đã cho vô nghiệm. Với m khác 1, phương trình có nghiệm duy nhất là x = m − 1. Bài 3. Giải và biện luận phương trình m2x + 2 = x + 2m. [1]. Phương trình [1] được viết lại dưới dạng [m2 − 1]x = 2m − 2. [2]. Với m khác ±1, phương trình [2] có nghiệm duy nhất x = 2m − 2. Với m = 1, phương trình [2] trở thành 0.x = 0. Phương trình đúng với mọi số thực x. Với m = −1, phương trình [2] trở thành 0.x = −4. Điều này vô lí nên phương trình đã cho vô nghiệm. Bài 4. Giải và biện luận phương trình m2x + 1 = [m − 1] x + m. [1]. Phương trình [1] được viết lại dưới dạng [m2 − m + 1]x = m − 1. [2]. Vì m2 − m + 1 khác 0, ∀x ∈ R nên phương trình [2] luôn có nghiệm duy nhất x = m − 1. Bài 5. Giải và biện luận phương trình m2x + 6 = 4x + 3m. [1]. Phương trình [1] được viết lại dưới dạng [m2 − 4]x = 3m − 6. [2]. Với m khác ±2, phương trình [2] có nghiệm duy nhất x = 3m − 6. Với m = 2, phương trình [2] trở thành 0.x = 0. Phương trình đúng với mọi số thực x. Với m = −2, phương trình [2] trở thành 0.x = −12. Điều này vô lí nên phương trình đã cho vô nghiệm.

Bài 6. Tìm giá trị tham số m để phương trình m2[mx − 1] = 2m [2x + 1] [1] có tập nghiệm là R. Phương trình [1] được viết lại dưới dạng. Phương trình [1] có tập nghiệm là R khi và chỉ khi phương trình [2] có tập nghiệm là R. Bài 7. Tìm giá trị tham số m để phương trình m[x − m + 3] = 2 [x − 2] + 6 [1], có tập nghiệm là R. Phương trình [1] được viết lại dưới dạng [m − 2]x = m2 − 3m + 2. [2]. Phương trình [1] có tập nghiệm là R khi và chỉ khi phương trình [2] có tập nghiệm là R. Bài 8. Tìm giá trị tham số m để phương trình m[x − m + 3] = 2 [x − 2] + 6 [1] có nghiệm duy nhất. Phương trình [1] được viết lại dưới dạng [m − 2]x = m2 − 3m + 2. [2]. Phương trình [1] có nghiệm duy nhất khi và chỉ khi phương trình [2] có nghiệm duy nhất. Điều này xảy ra khi và chỉ khi m − 2 khác 0 ⇔ m khác 2.

Lorem ipsum dolor sit amet, consectetur adipiscing elit.Morbi adipiscing gravdio, sit amet suscipit risus ultrices eu.Fusce viverra neque at purus laoreet consequa.Vivamus vulputate posuere nisl quis consequat.

Create an account

I. Tóm tắt lý thuyết

Cách giải và biện luận phương trình dạng ax+b=0 được tóm tắt trong bảng sau

ax + b = 0  [1]

Hệ số

Kết luận

a ≠ 0

[1] có nghiệm duy nhất x = -b/a

a = 0

b ≠ 0

[1] vô nghiệm

b = 0

[1] nghiệm đúng với mọi x

Khi a ≠ 0 phương trình ax + b = 0 được gọi là phương trình bậc nhất một ẩn

II. Ví dụ minh họa

Bài 1: Cho phương trình [m2 - 7m + 6]x + m2 - 1 = 0

a. Giải phương trình khi m = 0

b. Biện luận theo m số nghiệm của phương trình

Hướng dẫn:

a. Với m = 0 phương trình trở thành 6x - 1 = 0 ⇔ x = 1/6

Phương trình có nghiệm duy nhất x = 1/6

b. Ta có [m2 - 7m + 6]x + m2 - 1 = 0 ⇔ [m-1][m-6]x + [m-1][m+1] = 0

Nếu m = 1 phương trình trở thành 0 = 0. Khi đó phương trình có vô số nghiệm.

Nếu m = 6 thì phương trình trở thành 35 = 0 [Vô lí]. Khi đó phương trình vô nghiệm.

Bài 2: Tìm tất cả các giá trị thực của tham số m để phương trình [2m - 4]x = m - 2 có nghiệm duy nhất.

Hướng dẫn:

Phương trình đã cho có nghiệm duy nhất khi 2m - 4 ≠ 0 ⇔ m ≠ 2

B. Giải và biện luận phương trình bậc hai theo tham số m

I. Tóm tắt lý thuyết và phương pháp giải

Giải và biện luận phương trình bậc hai ax2 + bx + c = 0

Bước 1. Biến đổi phương trình về đúng dạng ax2 + bx + c = 0

Bước 2. Nếu hệ số a chứa tham số, ta xét 2 trường hợp:

- Trường hợp 1: a = 0, ta giải và biện luận ax + b = 0.

- Trường hợp 2: a ≠ 0. Ta lập Δ = b2 - 4ac. Khi đó:

+ Nếu Δ > 0 thì phương trình có 2 nghiệm phân biệt 

+ Nếu Δ = 0 thì phương trình có 1 nghiệm [kép]: x = -b/2a

+ Nếu Δ < 0 thì phương trình vô nghiệm.

Bước 3. Kết luận.

Lưu ý:

- Phương trình ax2 + bx + c = 0 có nghiệm 

- Phương trình ax2 + bx + c = 0 có nghiệm duy nhất 

II. Ví dụ minh họa

Bài 1: Phương trình [m–1]x2 + 3x – 1 = 0. Phương trình có nghiệm khi:

Hướng dẫn:

Với m = 1, phương trình trở thành 3x - 1 = 0 ⇔ x = 1/3

Do đó m = 1 thỏa mãn.

Với m ≠ 1, ta có Δ = 9 + 4[m-1] = 4m + 5

Phương trình có nghiệm khi Δ ≥ 0

Hợp hai trường hợp ta được m ≥ -5/4 là giá trị cần tìm

Bài 2: Phương trình [x2 - 3x + m][x - 1] = 0 có 3 nghiệm phân biệt khi:

Hướng dẫn:

Phương trình [1] có 3 nghiệm phân biệt

⇔ Phương trình [2] có hai nghiệm phân biệt khác 1

Tham khảo các bài học khác

Video liên quan

Chủ Đề