Neural stem cells from the brain can differentiate into which types of cell

  • Rao MS . Multipotent and restricted precursors in the central nervous system. Anat Rec 1999; 257: 137–148.

    CAS  Article  Google Scholar 

  • McConnell SK . Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 1995; 15: 761–768.

    CAS  Article  Google Scholar 

  • Altmann CR, Brivanlou AH . Neural patterning in the vertebrate embryo. Int Rev Cytol 2001; 203: 447–482.

    CAS  Article  Google Scholar 

  • Weinstein DC, Hemmati-Brivanlou A . Neural induction. Annu Rev Dev Biol 1999; 15: 411–433.

    CAS  Article  Google Scholar 

  • Wolpert L . Positional information and pattern formation in development. Dev Genet 1994; 15: 485–490.

    CAS  Article  Google Scholar 

  • Kobayashi D, Kobayashi M, Matsumoto K et al. Early subdivisions in the neural plate define distinct competence for inductive signals. Development 2001; 129: 83–93.

    Google Scholar 

  • Lumsden A, Krumlauf R . Patterning the vertebrate neuraxis. Science 1996; 274: 1109–1115.

    CAS  Article  Google Scholar 

  • Barres BA, Barde Y . Neuronal and glial cell biology. Curr Opin Neurobiol 2000; 10: 642–648.

    CAS  Article  Google Scholar 

  • Rao MS, Mayer-Proschel M . Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev Biol 1997; 188: 48–63.

    CAS  Article  Google Scholar 

  • Levison SW, Goldman JE . Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J Neurosci Res 1997; 48: 83–94.

    CAS  Article  Google Scholar 

  • Price J, Thurlow L . Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development 1988; 104: 173–182.

    Google Scholar 

  • Levison SW, Goldman JE . Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat brain. Neuron 1993; 10: 201–212.

    CAS  Article  Google Scholar 

  • Price J . Glial cell lineage and development. Curr Opin Neurobiol 1994; 4: 680–686.

    CAS  Article  Google Scholar 

  • Frisén J, Johansson CB, Lothian C et al. Central nervous system stem cells in the embryo and adult. Cell Mol Life Sci 1998; 54: 935–945.

    Article  Google Scholar 

  • Gage FH . Mammalian neural stem cells. Science 2000; 287: 1433–1438.

    CAS  Article  Google Scholar 

  • Gaiano N, Fishell G . Transplantation as a tool to study progenitors within the vertebrate nervous system. J Neurobiol 1999; 36: 152–161.

    Article  Google Scholar 

  • Kalyani AJ, Piper D, Mujtaba T, Lucero MT, Rao MS . Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture. J Neurosci 1998; 18: 7856–7868.

    CAS  Article  Google Scholar 

  • Temple S . The development of neural stem cells. Nature 2001; 414: 112–117.

    CAS  Article  Google Scholar 

  • Altman J, Das GD . Autoradiographic and histological studies of postnatal neurogenesis. J Comp Neurol 1966; 126: 337–390.

    CAS  Article  Google Scholar 

  • Bayer SA, Yackel JW, Puri PS . Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 1982; 216: 890–892.

    CAS  Article  Google Scholar 

  • Reynolds BA, Weiss S . Generation of neurons and astrocytes from isolated cells of the adult mammalian nervous system. Science 1992; 255: 1707–1710.

    CAS  Article  Google Scholar 

  • Lois C, Alvarez-Buylla A . Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 1993; 90: 2074–2077.

    CAS  Article  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4: 1313–1317.

    CAS  Article  Google Scholar 

  • Johansson CB, Momma S, Clarke DL et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999; 96: 25–34.

    CAS  Article  Google Scholar 

  • Doetsch F, Caille I, Lim DA et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999; 97: 703–716.

    CAS  Article  Google Scholar 

  • Rietze RL, Valcanis H, Brooker GF et al. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 2001; 412: 736–739.

    CAS  Article  Google Scholar 

  • Barres BA . A new role for glia: generation of neurons! Cell 1999; 97: 667–670.

    CAS  Article  Google Scholar 

  • Johe KK, Hazel TG, Muller T et al. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 1996; 10: 3129–3140.

    CAS  Article  Google Scholar 

  • Kuhn HG, Winkler J, Kempermann G et al. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 1997; 17: 5820–5829.

    CAS  Article  Google Scholar 

  • Zhang S, Ge B, Duncan ID . Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci USA 1999; 96: 4089–4094.

    CAS  Article  Google Scholar 

  • Shihabuddin LS, Horner PJ, Ray J et al. Adult spinal cord stem cells regenerate neurons after transplantation in the adult dentate gyrus. J Neurosci 2000; 20: 8727–8735.

    CAS  Article  Google Scholar 

  • Suhonen JO, Peterson DA, Ray J et al. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 1996; 383: 624–627.

    CAS  Article  Google Scholar 

  • Blau HM, Baltimore D . Differentiation requires continuous regulation. J Cell Biol 1991; 112: 781–783.

    CAS  Article  Google Scholar 

  • Terskikh AV, Easterday MC, Li L et al. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc Natl Acad Sci USA 2001; 98: 7934–7939.

    CAS  Article  Google Scholar 

  • Brazelton TR, Rossi FMV, Keshet GI et al. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000; 290: 1775–1779.

    CAS  Article  Google Scholar 

  • Mezey E, Chandross KJ, Harta G et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290: 1779–1782.

    CAS  Article  Google Scholar 

  • Bjornson CR, Rietze RL, Reynolds BA et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999; 283: 534–537.

    CAS  Article  Google Scholar 

  • Galli R, Borello U, Gritti A et al. Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 2000; 3: 986–991.

    CAS  Article  Google Scholar 

  • Clarke DL, Johansson CB, Wilbertz J et al. Generalized potential of adult neural stem cells. Science 2000; 288: 1660–1663.

    CAS  Article  Google Scholar 

  • What can neural stem cells differentiate into?

    Neural stem cells (NSCs) are a group of ectodermal progenitor cells, which can differentiate into committed neural sub-types, such as neurons, astrocytes, or oligodendrocytes.

    What type of stem cells are neural stem cells?

    Neural stem cells from the SGZ are called Type I cells and can generate proliferating IPCs, called Type 2 cells, similar to the type B cells of the SVZ. Intermediate progenitor cells give rise to neuroblasts (Type 3 cells) (Seri et al., 2004; Sugiyama et al., 2013).

    What are neural stem cells called?

    Neural stem cells (NSCs) are the stem cells of the nervous system. During development they give rise to the entire nervous system.