Tìm k để hệ phương trình tuyến tính có vô số nghiệm

Trong toán học [cụ thể là trong đại số tuyến tính], một hệ phương trình đại số tuyến tính hay đơn giản là hệ phương trình tuyến tính là một tập hợp các phương trình tuyến tính với cùng những biến số. Ví dụ:

Một phương pháp giải cho hệ trên là phương pháp thế. Trước hết, biến đổi phương trình đầu tiên để được phương trình tính ẩn x {\displaystyle x} theo y {\displaystyle y} :

x = 3 − 3 2 y . {\displaystyle x=3-{\frac {3}{2}}y.}

Sau đó thế hệ thức này vào phương trình dưới:

4 [ 3 − 3 2 y ] + 9 y = 15. {\displaystyle 4\left[3-{\frac {3}{2}}y\right]+9y=15.}

Ta được một phương trình bật nhất theo y {\displaystyle y} . Giải ra, ta được y = 1 {\displaystyle y=1} , và tính lại x {\displaystyle x} được x = 3 / 2 {\displaystyle x=3/2} .

Hình thức tổng quátSửa đổi

Hệ phương trình trên có thể được viết theo dạng phương trình ma trận:

Ax=b

Với A là ma trận chứa các hệ số ai, j [ai, j là phần tử ở hàng thứ i, cột thứ j của A]; x là vector chứa các biến xj; b là vector chứa các hằng số bi. Tức là:

[ a 1 , 1 a 1 , 2 ⋯ a 1 , k a 2 , 1 a 2 , 2 ⋯ a 2 , k ⋮ ⋮ ⋱ ⋮ a n , 1 a n , 2 ⋯ a n , k ] [ x 1 x 2 ⋮ x k ] = [ b 1 b 2 ⋮ b n ] {\displaystyle {\begin{bmatrix}a_{1,1}&a_{1,2}&\cdots &a_{1,k}\\a_{2,1}&a_{2,2}&\cdots &a_{2,k}\\\vdots &\vdots &\ddots &\vdots \\a_{n,1}&a_{n,2}&\cdots &a_{n,k}\end{bmatrix}}{\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{k}\end{bmatrix}}={\begin{bmatrix}b_{1}\\b_{2}\\\vdots \\b_{n}\end{bmatrix}}}

Nếu các biến số của hệ phương trình tuyến tính nằm trong các trường đại số vô hạn [ví dụ số thực hay số phức], thì chỉ có ba trường hợp xảy ra:

  • hệ không có nghiệm [vô nghiệm]
  • hệ có duy nhất một nghiệm
  • hệ có vô số nghiệm

Hệ phương trình tuyến tính có thể thấy trong nhiều ứng dụng trong khoa học.

Điều kiện có nghiệm trong trường hợp tổng quátSửa đổi

Trong trường hợp tổng quát, ta xét các ma trận hệ số A và ma trận hệ số bổ sung thêm cột các số hạng ở vế phải A' .

A = [ a 1 , 1 a 1 , 2 ⋯ a 1 , k a 2 , 1 a 2 , 2 ⋯ a 2 , k ⋅ ⋅ ⋯ ⋅ a n , 1 a n , 2 ⋯ a n , k ] {\displaystyle A={\begin{bmatrix}a_{1,1}&a_{1,2}&\cdots &a_{1,k}\\a_{2,1}&a_{2,2}&\cdots &a_{2,k}\\\cdot &\cdot &\cdots &\cdot \\a_{n,1}&a_{n,2}&\cdots &a_{n,k}\end{bmatrix}}} ; A ′ = [ a 1 , 1 a 1 , 2 ⋯ a 1 , k b 1 a 2 , 1 a 2 , 2 ⋯ a 2 , k b 2 ⋅ ⋅ ⋅ ⋅ ⋅ a n , 1 a n , 2 ⋯ a n , k b n ] {\displaystyle A'={\begin{bmatrix}a_{1,1}&a_{1,2}&\cdots &a_{1,k}&b_{1}\\a_{2,1}&a_{2,2}&\cdots &a_{2,k}&b_{2}\\\cdot &\cdot &\cdot &\cdot &\cdot \\a_{n,1}&a_{n,2}&\cdots &a_{n,k}&b_{n}\end{bmatrix}}}

Khi đó hệ có nghiệm khi và chỉ khi hạng của hai ma trận này bằng nhau.

r a n k [ A ] = r a n k [ A ′ ] = r {\displaystyle rank[A]=rank[A']=r} .

Chi tiết hơn ta có:

  1. Nếu r = r a n [ A ] < r a n [ A ′ ] {\displaystyle r=ran[A]

Chủ Đề