Zwitterionic là gì

1. Varki A. Nothing in glycobiology makes sense, except in the light of evolution. Cell. 2006;126:841–845. doi: 10.1016/j.cell.2006.08.022. [PubMed] [CrossRef] [Google Scholar]

2. Schauer R, Kamerling JP. Exploration of the sialic acid world. Adv. Carbohydr. Chem. Biochem. 2018;75:1–213. doi: 10.1016/bs.accb.2018.09.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Bülow HE, Hobert O. The molecular diversity of glycosaminoglycans shapes animal development. Annu. Rev. Cell Dev. Biol. 2006;22:375–407. doi: 10.1146/annurev.cellbio.22.010605.093433. [PubMed] [CrossRef] [Google Scholar]

4. Morita I, Kizuka Y, Kakuda S, Oka S. Expression and function of the HNK-1 carbohydrate. J. Biochem. 2008;143:719–724. doi: 10.1093/jb/mvm221. [PubMed] [CrossRef] [Google Scholar]

5. Honke K, Taniguchi N. Sulfotransferases and sulfated oligosaccharides. Med. Res. Rev. 2002;22:637–654. doi: 10.1002/med.10020. [PubMed] [CrossRef] [Google Scholar]

6. Pomin VH. Phylogeny, structure, function, biosynthesis and evolution of sulfated galactose-containing glycans. Int. J. Biol. Macromol. 2016;84:372–379. doi: 10.1016/j.ijbiomac.2015.12.035. [PubMed] [CrossRef] [Google Scholar]

7. Pohl, S., Marschner, K., Storch, S., Braulke, T.: Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases. Biol. Chem. 390(521–527), (2009). 10.1515/BC.2009.076 [PubMed]

8. Kinoshita T, Fujita M. Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. J. Lipid Res. 2016;57:6–24. doi: 10.1194/jlr.R063313. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Praissman JL, Willer T, Sheikh MO, Toi A, Chitayat D, Lin YY, Lee H, Stalnaker SH, Wang S, Prabhakar PK, Nelson SF, Stemple DL, Moore SA, Moremen KW, Campbell KP, Wells L. The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition. Elife. 2016;5:e14473. doi: 10.7554/eLife.14473. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Scheller HV, Ulvskov P. Hemicelluloses. Annu. Rev. Plant Biol. 2010;61:263–289. doi: 10.1146/annurev-arplant-042809-112315. [PubMed] [CrossRef] [Google Scholar]

11. Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 2009;344:1879–1900. doi: 10.1016/j.carres.2009.05.021. [PubMed] [CrossRef] [Google Scholar]

12. Li, W., De Schutter, K., Van Damme, E.J.M., Smagghe, G.: Synthesis and biological roles of O-glycans in insects. Glycoconj. J. (2019). 10.1007/s10719-019-09867-1 [PubMed]

13. Paschinger, K., Yan, S., Wilson, I.B.H.: N-glycomic complexity in anatomical simplicity: Caenorhabditis elegans as a non-model nematode? Front. Mol. Biosci. 6(9), (2019). 10.3389/fmolb.2019.00009 [PMC free article] [PubMed]

14. Zhu F, Li D, Chen K. Structures and functions of invertebrate glycosylation. Open Biol. 2019;9:180232. doi: 10.1098/rsob.180232. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Hwang H-Y, Horvitz HR. The Caenorhabditis elegans vulval morphogenesis gene sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially regulated. Proc. Natl. Acad. Sci. U. S. A. 2002;99:14224–14229. [PMC free article] [PubMed] [Google Scholar]

16. Paschinger K, Wilson IBH. Analysis of zwitterionic and anionic N-linked glycans from invertebrates and protists by mass spectrometry. Glycoconj. J. 2016;33:273–283. doi: 10.1007/s10719-016-9650-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Caffall KH, Pattathil S, Phillips SE, Hahn MG, Mohnen D. Arabidopsis thaliana T-DNA mutants implicate GAUT genes in the biosynthesis of pectin and xylan in cell walls and seed testa. Mol. Plant. 2009;2:1000–1014. doi: 10.1093/mp/ssp062. [PubMed] [CrossRef] [Google Scholar]

18. Dejima K, Takemura M, Nakato E, Peterson J, Hayashi Y, Kinoshita-Toyoda A, Toyoda H, Nakato H. Analysis of Drosophila glucuronyl C5-epimerase: implications for developmental roles of heparan sulfate sulfation compensation and 2-O-sulfated glucuronic acid. J. Biol. Chem. 2013;288:34384–34393. doi: 10.1074/jbc.M113.499269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Zhou H, Hanneman AJ, Chasteen ND, Reinhold VN. Anomalous N-glycan structures with an internal fucose branched to GlcA and GlcN residues isolated from a mollusk shell-forming fluid. J. Proteome Res. 2013;12:4547–4555. doi: 10.1021/pr4006734. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Eckmair B, Jin C, Abed-Navandi D, Paschinger K. Multi-step fractionation and mass spectrometry reveals zwitterionic and anionic modifications of the N- and O-glycans of a marine snail. Mol. Cell. Proteomics. 2016;15:573–597. doi: 10.1074/mcp.M115.051573. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Kurz S, Aoki K, Jin C, Karlsson NG, Tiemeyer M, Wilson IBH, Paschinger K. Targetted release and fractionation reveal glucuronylated and sulphated N- and O-glycans in larvae of dipteran insects. J. Proteome. 2015;126:172–188. doi: 10.1016/j.jprot.2015.05.030. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Aoki K, Tiemeyer M. The glycomics of glycan glucuronylation in Drosophila melanogaster. Methods Enzymol. 2010;480:297–321. doi: 10.1016/S0076-6879(10)80014-X. [PubMed] [CrossRef] [Google Scholar]

23. Hykollari A, Malzl D, Eckmair B, Vanbeselaere J, Scheidl P, Jin C, Karlsson NG, Wilson IBH, Paschinger K. Isomeric separation and recognition of anionic and zwitterionic N-glycans from royal jelly glycoproteins. Mol. Cell. Proteomics. 2018;17:2177–2196. doi: 10.1074/mcp.RA117.000462. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Stanton R, Hykollari A, Eckmair B, Malzl D, Dragosits M, Palmberger D, Wang P, Wilson IBH, Paschinger K. The underestimated N-glycomes of lepidopteran species. Biochim. Biophys. Acta. 2017;1861:699–714. doi: 10.1016/j.bbagen.2017.01.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Martini F, Eckmair B, Neupert C, Štefanić S, Jin C, Garg M, Jiménez-Castells C, Hykollari A, Yan S, Venco L, Varón Silva D, Wilson IBH, Paschinger K. Highly modified and immunoactive N-glycans of the canine heartworm. Nat. Commun. 2019;10(75):75. doi: 10.1038/s41467-018-07948-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Wiegandt H. Insect glycolipids. Biochim. Biophys. Acta. 1992;1123:117–126. [PubMed] [Google Scholar]

27. Fontaine T, Lamarre C, Simenel C, Lambou K, Coddeville B, Delepierre M, Latge JP. Characterization of glucuronic acid containing glycolipid in Aspergillus fumigatus mycelium. Carbohydr. Res. 2009;344:1960–1967. doi: 10.1016/j.carres.2009.07.012. [PubMed] [CrossRef] [Google Scholar]

28. Heiss C, Skowyra ML, Liu H, Klutts JS, Wang Z, Williams M, Srikanta D, Beverley SM, Azadi P, Doering TL. Unusual galactofuranose modification of a capsule polysaccharide in the pathogenic yeast Cryptococcus neoformans. J. Biol. Chem. 2013;288:10994–11003. doi: 10.1074/jbc.M112.441998. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Breloy I, Schwientek T, Lehr S, Hanisch FG. Glucuronic acid can extend O-linked core 1 glycans, but it contributes only weakly to the negative surface charge of Drosophila melanogasterSchneider-2 cells. FEBS Lett. 2008;582:1593–1598. doi: 10.1016/j.febslet.2008.04.003. [PubMed] [CrossRef] [Google Scholar]

30. Gaunitz S, Jin C, Nilsson A, Liu J, Karlsson NG, Holgersson J. Mucin-type proteins produced in the Trichoplusia ni and Spodoptera frugiperda insect cell lines carry novel O-glycans with phosphocholine and sulfate substitutions. Glycobiology. 2013;23:778–796. doi: 10.1093/glycob/cwt015. [PubMed] [CrossRef] [Google Scholar]

31. Itoh K, Akimoto Y, Kondo S, Ichimiya T, Aoki K, Tiemeyer M, Nishihara S. Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles. Dev. Biol. 2018;436:108–124. doi: 10.1016/j.ydbio.2018.02.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Palaima E, Leymarie N, Stroud D, Mizanur RM, Hodgkin J, Gravato-Nobre MJ, Costello CE, Cipollo JF. The Caenorhabditis elegans bus-2 mutant reveals a new class of O-glycans affecting bacterial resistance. J. Biol. Chem. 2010;285:17662–17672. doi: 10.1074/jbc.M109.065433. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Bergwerff, A.A., Van Dam, G.J., Rotmans, J.P., Deelder, A.M., Kamerling, J.P., Vliegenthart, J.F.G.: The immunologically reactive part of immunopurified circulating anodic antigen from Schistosoma mansoni is a threonine- linked polysaccharide consisting of →6)-(β-D-GlcpA-(1→3))-β-D-GalpNAc-(1→ repeating units. J. Biol. Chem. 269, 31510–31517 (1994) [PubMed]

34. Ashwood C, Abrahams JL, Nevalainen H, Packer NH. Enhancing structural characterisation of glucuronidated O-linked glycans using negative mode ion trap higher energy collision-induced dissociation mass spectrometry. Rapid Commun. Mass Spectrom. 2017;31:851–858. doi: 10.1002/rcm.7851. [PubMed] [CrossRef] [Google Scholar]

35. Yamada S, Okada Y, Ueno M, Iwata S, Deepa SS, Nishimura S, Fujita M, Van Die I, Hirabayashi Y, Sugahara K. Determination of the glycosaminoglycan-protein linkage region oligosaccharide structures of proteoglycans from Drosophila melanogaster and Caenorhabditis elegans. J. Biol. Chem. 2002;277:31877–31886. [PubMed] [Google Scholar]

36. Lawrence R, Olson SK, Steele RE, Wang L, Warrior R, Cummings RD, Esko JD. Evolutionary differences in glycosaminoglycan fine structure detected by quantitative glycan reductive isotope labeling. J. Biol. Chem. 2008;283:33674–33684. doi: 10.1074/jbc.M804288200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Im AR, Park Y, Sim JS, Zhang Z, Liu Z, Linhardt RJ, Kim YS. Glycosaminoglycans from earthworms (Eisenia andrei) Glycoconj. J. 2010;27:249–257. doi: 10.1007/s10719-009-9273-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Noborn F, Gomez Toledo A, Nasir W, Nilsson J, Dierker T, Kjellen L, Larson G. Expanding the chondroitin glycoproteome of Caenorhabditis elegans. J. Biol. Chem. 2018;293:379–389. doi: 10.1074/jbc.M117.807800. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Vilela-Silva AC, Werneck CC, Valente AP, Vacquier VD, Mourão PA. Embryos of the sea urchin Strongylocentrotus purpuratus synthesize a dermatan sulfate enriched in 4-O- and 6-O-disulfated galactosamine units. Glycobiology. 2001;11:433–440. [PubMed] [Google Scholar]

40. Csoka AB, Stern R. Hypotheses on the evolution of hyaluronan: a highly ironic acid. Glycobiology. 2013;23:398–411. doi: 10.1093/glycob/cws218. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Hwang H-Y, Olson SK, Esko JD, Horvitz HR. Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis. Nature. 2003;423:439–443. [PubMed] [Google Scholar]

42. Izumikawa T, Egusa N, Taniguchi F, Sugahara K, Kitagawa H. Heparan sulfate polymerization in Drosophila. J. Biol. Chem. 2006;281:1929–1934. doi: 10.1074/jbc.M509138200. [PubMed] [CrossRef] [Google Scholar]

43. Kim B-T, Tsuchida K, Lincecum J, Kitagawa H, Bernfield M, Sugahara K. Identification and characterization of three Drosophila melanogaster glucuronyltransferases responsible for the synthesis of the conserved glycosaminoglycan-protein linkage region of proteoglycans. Two novel homologs exhibit broad specificity toward oligosaccharides from proteoglycans, glycoproteins, and glycosphingolipids. J. Biol. Chem. 2003;278:9116–9124. doi: 10.1074/jbc.M209344200. [PubMed] [CrossRef] [Google Scholar]

44. Aoki K, Perlman M, Lim JM, Cantu R, Wells L, Tiemeyer M. Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J. Biol. Chem. 2007;282:9127–9142. [PubMed] [Google Scholar]

45. Takashima S, Abe T, Yoshida S, Kawahigashi H, Saito T, Tsuji S, Tsujimoto M. Analysis of Sialyltransferase-like proteins from Oryza sativa. J Biochem (Tokyo) 2006;139:279–287. [PubMed] [Google Scholar]

46. Dumont M, Lehner A, Bouton S, Kiefer-Meyer MC, Voxeur A, Pelloux J, Lerouge P, Mollet JC. The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein. Ann. Bot. 2014;114:1177–1188. doi: 10.1093/aob/mcu093. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Eugenia Giorgi M, de Lederkremer RM. Trans-sialidase and mucins of Trypanosoma cruzi: an important interplay for the parasite. Carbohydr. Res. 2011;346:1389–1393. doi: 10.1016/j.carres.2011.04.006. [PubMed] [CrossRef] [Google Scholar]

48. Roth J, Kempf A, Reuter G, Schauer R, Gehring WJ. Occurrence of sialic acids in Drosophila melanogaster. Science. 1992;256:673–675. [PubMed] [Google Scholar]

49. Frappaolo A, Sechi S, Kumagai T, Robinson S, Fraschini R, Karimpour-Ghahnavieh A, Belloni G, Piergentili R, Tiemeyer KH, Tiemeyer M, Giansanti MG. COG7 deficiency in Drosophila generates multifaceted developmental, behavioral and protein glycosylation phenotypes. J. Cell Sci. 2017;130:3637–3649. doi: 10.1242/jcs.209049. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Koles K, Irvine KD, Panin VM. Functional characterization of Drosophila sialyltransferase. J. Biol. Chem. 2004;279:4346–4357. [PubMed] [Google Scholar]

51. Repnikova E, Koles K, Nakamura M, Pitts J, Li H, Ambavane A, Zoran MJ, Panin VM. Sialyltransferase regulates nervous system function in Drosophila. J. Neurosci. 2010;30:6466–6476. doi: 10.1523/JNEUROSCI.5253-09.2010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Kajiura H, Hamaguchi Y, Mizushima H, Misaki R, Fujiyama K. Sialylation potentials of the silkworm, Bombyx mori; B. mori possesses an active α2,6-sialyltransferase. Glycobiology. 2015;25:1441–1453. doi: 10.1093/glycob/cwv060. [PubMed] [CrossRef] [Google Scholar]

53. Di W, Fujita A, Hamaguchi K, Delannoy P, Sato C, Kitajima K. Diverse subcellular localizations of the insect CMP-sialic acid synthetases. Glycobiology. 2017;27:329–341. doi: 10.1093/glycob/cww128. [PubMed] [CrossRef] [Google Scholar]

54. Aumiller JJ, Hollister J, Jarvis DL. A transgenic insect cell line engineered to produce CMP-sialic acid and sialylated glycoproteins. Glycobiology. 2003;13:497–507. doi: 10.1093/glycob/cwg051. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Guérardel Y, Chang LY, Fujita A, Coddeville B, Maes E, Sato C, Harduin-Lepers A, Kubokawa K, Kitajima K. Sialome analysis of the cephalochordate Branchiostoma belcheri, a key organism for vertebrate evolution. Glycobiology. 2012;22:479–491. [PubMed] [Google Scholar]

56. Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R. The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology. 2005;15:805–817. doi: 10.1093/glycob/cwi063. [PubMed] [CrossRef] [Google Scholar]

57. Petit D, Teppa E, Mir AM, Vicogne D, Thisse C, Thisse B, Filloux C, Harduin-Lepers A. Integrative view of α2,3-sialyltransferases (ST3Gal) molecular and functional evolution in deuterostomes: significance of lineage-specific losses. Mol. Biol. Evol. 2015;32:906–927. doi: 10.1093/molbev/msu395. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Harduin-Lepers A, Petit D, Mollicone R, Delannoy P, Petit JM, Oriol R. Evolutionary history of the α2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes. BMC Evol. Biol. 2008;8:258. doi: 10.1186/1471-2148-8-258. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Warren L. N-Glycolyl-8-O-Methylneuraminic acid, a new form of sialic acid in the starfish Asterias forbesi. Biochim. Biophys. Acta. 1964;83:129–132. [PubMed] [Google Scholar]

60. Klein A, Diaz S, Ferreira I, Lamblin G, Roussel P, Manzi AE. New sialic acids from biological sources identified by a comprehensive and sensitive approach: liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) of SIA quinoxalinones. Glycobiology. 1997;7:421–432. [PubMed] [Google Scholar]

61. Schlenzka W, Shaw L, Schauer R. Catalytic properties of the CMP-N-acetylneuraminic acid hydroxylase from the starfish Asterias rubens: comparison with the mammalian enzyme. Biochim. Biophys. Acta. 1993;1161:131–138. [PubMed] [Google Scholar]

62. Kelm A, Shaw L, Schauer R, Reuter G. The biosynthesis of 8-O-methylated sialic acids in the starfish Asterias rubens- isolation and characterisation of S-adenosyl-L-methionine:sialate-8-O-methyltransferase. Eur. J. Biochem. 1998;251:874–884. [PubMed] [Google Scholar]

63. Miyata S, Sato C, Kumita H, Toriyama M, Vacquier VD, Kitajima K. Flagellasialin: a novel sulfated α2,9-linked polysialic acid glycoprotein of sea urchin sperm flagella. Glycobiology. 2006;16:1229–1241. [PubMed] [Google Scholar]

64. Miyata S, Sato C, Kitamura S, Toriyama M, Kitajima K. A major flagellum sialoglycoprotein in sea urchin sperm contains a novel polysialic acid, an α2,9-linked poly-N-acetylneuraminic acid chain, capped by an 8-O-sulfated sialic acid residue. Glycobiology. 2004;14:827–840. doi: 10.1093/glycob/cwh200. [PubMed] [CrossRef] [Google Scholar]

65. Miyata S, Yamakawa N, Toriyama M, Sato C, Kitajima K. Co-expression of two distinct polysialic acids, α2,8- and α2,9-linked polymers of N-acetylneuraminic acid, in distinct glycoproteins and glycolipids in sea urchin sperm. Glycobiology. 2011;21:1596–1605. [PubMed] [Google Scholar]

66. Kitazume S, Kitajima K, Inoue S, Haslam SM, Morris HR, Dell A, Lennarz WJ, Inoue Y. The occurrence of novel 9-O-sulfatedN-glycolylneuraminic acid-capped α2→5-Oglycolyl-linked oligo/polyNeu5Gc chains in sea urchin egg cell surface glycoprotein. Identification of a new chain termination signal for polysialyltransferase. J. Biol. Chem. 1996;271:6694–6701. [PubMed] [Google Scholar]

67. Yamada K, Hamada A, Kisa F, Miyamoto T, Higuchi R. Constituents of Holothuroidea, 13. Structure of neuritogenic active ganglioside molecular species from the sea cucumber Stichopus chloronotus. Chem Pharm Bull (Tokyo) 2003;51:46–52. [PubMed] [Google Scholar]

68. Inagaki M, Miyamoto T, Isobe R, Higuchi R. Biologically active glycosides from asteroidea, 43. Isolation and structure of a new neuritogenic-active ganglioside molecular species from the starfish Linckia laevigata. Chem Pharm Bull (Tokyo) 2005;53:1551–1554. [PubMed] [Google Scholar]

69. Prokazova NV, Mikhailov AT, Kocharov SL, Malchenko LA, Zvezdina ND, Buznikov G, Bergelson LD. Unusual gangliosides of eggs and embryos of the sea urchin Strongylocentrotus intermedius. Structure and density-dependence of surface localization. Eur. J. Biochem. 1981;115:671–677. [PubMed] [Google Scholar]

70. Ijuin T, Kitajima K, Song Y, Kitazume S, Inoue S, Haslam SM, Morris HR, Dell A, Inoue Y. Isolation and identification of novel sulfated and nonsulfated oligosialyl glycosphingolipids from sea urchin sperm. Glycoconj. J. 1996;13:401–413. [PubMed] [Google Scholar]

71. Higuchi R, Inagaki M, Yamada K, Miyamoto T. Biologically active gangliosides from echinoderms. J. Nat. Med. 2007;61:367–370. doi: 10.1007/s11418-007-0171-6. [CrossRef] [Google Scholar]

72. Gemmill TR, Trimble RB. Schizosaccharomyces pombe produces novel pyruvate-containing N-linked oligosaccharides. J. Biol. Chem. 1996;271:25945–25949. [PubMed] [Google Scholar]

73. Andreishcheva EN, Kunkel JP, Gemmill TR, Trimble RB. Five genes involved in biosynthesis of the pyruvylated Galβ1,3-epitope in Schizosaccharomyces pombeN-linked glycans. J. Biol. Chem. 2004;279:35644–35655. doi: 10.1074/jbc.M403574200. [PubMed] [CrossRef] [Google Scholar]

74. Yoritsune K, Matsuzawa T, Ohashi T, Takegawa K. The fission yeast Pvg1p has galactose-specific pyruvyltransferase activity. FEBS Lett. 2013;587:917–921. doi: 10.1016/j.febslet.2013.02.016. [PubMed] [CrossRef] [Google Scholar]

75. Araki S, Abe S, Yamada S, Satake M, Fujiwara N, Kon K, Ando S. Characterization of two novel pyruvylated glycosphingolipids containing 2′-aminoethylphosphoryl(⟶6)-galactose from the nervous system of Aplysia kurodai. J. Biochem. 1992;112:461–469. [PubMed] [Google Scholar]

76. Guérardel Y, Czeszak X, Sumanovski LT, Karamanos Y, Popescu O, Strecker G, Misevic GN. Molecular fingerprinting of carbohydrate structure phenotypes of three porifera proteoglycan-like glyconectins. J. Biol. Chem. 2004;279:15591–15603. doi: 10.1074/jbc.M308928200. [PubMed] [CrossRef] [Google Scholar]

77. Yamada S, Sugahara K, Ozbek S. Evolution of glycosaminoglycans: comparative biochemical study. Commun Integr Biol. 2011;4:150–158. doi: 10.4161/cib.4.2.14547. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Kariya Y, Watabe S, Kyogashima M, Ishihara M, Ishii T. Structure of fucose branches in the glycosaminoglycan from the body wall of the sea cucumber Stichopus japonicus. Carbohydr. Res. 1997;297:273–279. [PubMed] [Google Scholar]

79. Aquino RS, Grativol C, Mourão PA. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. PLoS One. 2011;6:e18862. [PMC free article] [PubMed] [Google Scholar]

80. Vasconcelos Ariana, Pomin Vitor. The Sea as a Rich Source of Structurally Unique Glycosaminoglycans and Mimetics. Microorganisms. 2017;5(3):51. [PMC free article] [PubMed] [Google Scholar]

81. Vilela-Silva AC, Hirohashi N, Mourao PA. The structure of sulfated polysaccharides ensures a carbohydrate-based mechanism for species recognition during sea urchin fertilization. Int J Dev Biol. 2008;52:551–559. doi: 10.1387/ijdb.072531av. [PubMed] [CrossRef] [Google Scholar]

82. Pomin VH. Structural and functional insights into sulfated galactans: a systematic review. Glycoconj. J. 2010;27:1–12. doi: 10.1007/s10719-009-9251-z. [PubMed] [CrossRef] [Google Scholar]

83. Yu B, Benning C. Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J. 2003;36:762–770. [PubMed] [Google Scholar]

84. Coddeville B, Maes E, Ferrier-Pages C, Guerardel Y. Glycan profiling of gel forming mucus layer from the scleractinian symbiotic coral Oculina arbuscula. Biomacromolecules. 2011;12:2064–2073. doi: 10.1021/bm101557v. [PubMed] [CrossRef] [Google Scholar]

85. van Kuik JA, Breg J, Kolsteeg CEM, Kamerling JP, Vliegenthart JFG. Primary structure of the acidic carbohydrate chain of Hemocyanin from Panulirus interruptus. FEBS Lett. 1987;221:150–154. doi: 10.1016/0014-5793(87)80370-8. [CrossRef] [Google Scholar]

86. Cabrera G, Salazar V, Montesino R, Tambara Y, Struwe WB, Lugo EL, Harvey DJ, Antoine L, Rincon M, Domon B, Mendez Martinez MD, Portela M, Gonzalez-Hernandez A, Triguero A, Duran R, Lundberg U, Vonasek E, Gonzalez LJ. Structural characterization and biological implications of sulfated N-glycans in a serine protease from the neotropical moth Hylesia metabus (Cramer [1775]) (Lepidoptera: Saturniidae) Glycobiology. 2015;26(230–250):cwv096. doi: 10.1093/glycob/cwv096. [PubMed] [CrossRef] [Google Scholar]

87. Freeze HH. Mannose 6-sulfate is present in the N-linked oligosaccharides of lysosomal enzymes of Dictyostelium. Arch. Biochem. Biophys. 1985;243:690–693. [PubMed] [Google Scholar]

88. Hykollari A, Balog CI, Rendic D, Braulke T, Wilson IB, Paschinger K. Mass spectrometric analysis of neutral and anionic N-glycans from a Dictyostelium discoideum model for human congenital disorder of glycosylation CDG IL. J. Proteome Res. 2013;12:1173–1187. doi: 10.1021/pr300806b. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Kurz S, Jin C, Hykollari A, Gregorich D, Giomarelli B, Vasta GR, Wilson IBH, Paschinger K. Haemocytes and plasma of the eastern oyster (Crassostrea virginica) display a diverse repertoire of sulphated and blood group A-modified N-glycans. J. Biol. Chem. 2013;288:24410–24428. doi: 10.1074/jbc.M113.478933. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Kabakoff B, Hwang SP, Lennarz WJ. Characterization of post-translational modifications common to three primary mesenchyme cell-specific glycoproteins involved in sea urchin embryonic skeleton formation. Dev. Biol. 1992;150:294–305. [PubMed] [Google Scholar]

91. Farach-Carson MC, Carson DD, Collier JL, Lennarz WJ, Park HR, Wright GC. A calcium-binding, asparagine-linked oligosaccharide is involved in skeleton formation in the sea urchin embryo. J. Cell Biol. 1989;109:1289–1299. [PMC free article] [PubMed] [Google Scholar]

92. Park Y, Zhang Z, Linhardt RJ, LeMosy EK. Distinct heparan sulfate compositions in wild-type and pipe-mutant eggshell matrix. Fly (Austin) 2008;2:175–179. [PMC free article] [PubMed] [Google Scholar]

93. Kamimura K, Fujise M, Villa F, Izumi S, Habuchi H, Kimata K, Nakato H. Drosophila heparan sulphate 6-O-sulphotransferase(dHS6ST) gene: structure, expression and function in the formation of the tracheal system. J. Biol. Chem. 2001;276:17014–17021. doi: 10.1074/jbc.M011354200. [PubMed] [CrossRef] [Google Scholar]

94. Dierker T, Shao C, Haitina T, Zaia J, Hinas A, Kjellen L. Nematodes join the family of chondroitin sulfate-synthesizing organisms: identification of an active chondroitin sulfotransferase in Caenorhabditis elegans. Sci. Rep. 2016;6:34662. doi: 10.1038/srep34662. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Kinnunen T, Huang Z, Townsend J, Gatdula MM, Brown JR, Esko JD, Turnbull JE. Heparan 2-O-sulfotransferase, hst-2, is essential for normal cell migration in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 2005;102:1507–1512. doi: 10.1073/pnas.0401591102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Townley RA, Bulow HE. Genetic analysis of the heparan modification network in Caenorhabditis elegans. J. Biol. Chem. 2011;286:16824–16831. doi: 10.1074/jbc.M111.227926. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Qian Y, Lee I, Lee WS, Qian M, Kudo M, Canfield WM, Lobel P, Kornfeld S. Functions of the α, β, and γ subunits of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase. J. Biol. Chem. 2010;285:3360–3370. doi: 10.1074/jbc.M109.068650. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Couso R, Lang L, Roberts RM, Kornfeld S. Phosphorylation of the oligosaccharide of uteroferrin by UDP-GlcNAc:glycoprotein N-acetylglucosamine-1-phosphotransferases from rat liver, Acanthamoeba castellani, and Dictyostelium discoideum requires α1,2-linked mannose residues. J. Biol. Chem. 1986;261:6326–6331. [PubMed] [Google Scholar]

99. Qian Y, West CM, Kornfeld S. UDP-GlcNAc:glycoprotein N-acetylglucosamine-1-phosphotransferase mediates the initial step in the formation of the methylphosphomannosyl residues on the high mannose oligosaccharides of Dictyostelium discoideum glycoproteins. Biochem. Biophys. Res. Commun. 2010;393:678–681. [PMC free article] [PubMed] [Google Scholar]

100. Gabel CA, Costello CE, Reinhold VN, Kurz L, Kornfeld S. Identification of methylphosphomannosyl residues as components of the high mannose oligosaccharides of Dictyostelium discoideum glycoproteins. J. Biol. Chem. 1984;259:13762–13769. [PubMed] [Google Scholar]

101. Hykollari, A., Dragosits, M., Rendic, D., Wilson, I.B., Paschinger, K.: N-glycomic profiling of a glucosidase II mutant of Dictyostelium discoideum by “off-line” liquid chromatography and mass spectrometry. Electrophoresis. 35(2116–2129), (2014). 10.1002/elps.201300612 [PMC free article] [PubMed]

102. Hykollari A, Malzl D, Yan S, Wilson IBH, Paschinger K. Hydrophilic interaction anion exchange for separation of multiply modified neutral and anionic Dictyostelium N-glycans. Electrophoresis. 2017;38:2175–2183. doi: 10.1002/elps.201700073. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Paschinger K, Hykollari A, Razzazi-Fazeli E, Greenwell P, Leitsch D, Walochnik J, Wilson IBH. The N-glycans of Trichomonas vaginalis contain variable core and antennal modifications. Glycobiology. 2012;22:300–313. [PMC free article] [PubMed] [Google Scholar]

104. Hernandez LM, Ballou L, Alvarado E, Tsai PK, Ballou CE. Structure of the phosphorylated N-linked oligosaccharides from the mnn9 and mnn10 mutants of Saccharomyces cerevisiae. J. Biol. Chem. 1989;264:13648–13659. [PubMed] [Google Scholar]

105. Wang X-H, Nakayama K, Shimma Y, Tanaka A, Jigami Y. MNN6, a member of the KRE2/MNT1 family, is the gene for mannosylphosphate transfer in Saccharomyces cerevisiae. J. Biol. Chem. 1997;272:18117–18124. [PubMed] [Google Scholar]

106. Allen S, Richardson JM, Mehlert A, Ferguson MAJ. Structure of a complex phosphoglycan epitope from gp72 of Trypanosoma cruzi. J. Biol. Chem. 2013;288:11093–11105. doi: 10.1074/jbc.M113.452763. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Moody-Haupt S, Patterson JH, Mirelman D, McConville MJ. The major surface antigens of Entamoeba histolytica trophozoites are GPI-anchored proteophosphoglycans. J. Mol. Biol. 2000;297:409–420. [PubMed] [Google Scholar]

108. Mehta DP, Ichikawa M, Salimath PV, Etchison JR, Haak R, Manzi A, Freeze HH. A lysosomal cysteine proteinase from Dictyostelium discoideum contains N-acetylglucosamine-1-phosphate bound to serine but not mannose-6-phosphate on N-linked oligosaccharides. J. Biol. Chem. 1996;271:10897–10903. [PubMed] [Google Scholar]

109. Kinoshita T. Biosynthesis and deficiencies of glycosylphosphatidylinositol. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90:130–143. [PMC free article] [PubMed] [Google Scholar]

110. Pöltl G, Kerner D, Paschinger K, Wilson IBH. N-Glycans of the porcine nematode parasite Ascaris suum are modified with phosphorylcholine and core fucose residues. FEBS J. 2007;274:714–726. doi: 10.1111/j.1742-4658.2006.05615.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Paschinger K, Wilson IBH. Two types of galactosylated fucose motifs are present on N-glycans of Haemonchus contortus. Glycobiology. 2015;25:585–590. doi: 10.1093/glycob/cwv015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Jiménez-Castells C, Vanbeselaere J, Kohlhuber S, Ruttkowski B, Joachim A, Paschinger K. Gender and developmental specific N-glycomes of the porcine parasite Oesophagostomum dentatum. Biochim. Biophys. Acta. 2017;1861:418–430. doi: 10.1016/j.bbagen.2016.10.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Yan S, Wilson IBH, Paschinger K. Comparison of RP-HPLC modes to analyse the N-glycome of the free-living nematode Pristionchus pacificus. Electrophoresis. 2015;36:1314–1329. doi: 10.1002/elps.201400528. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Haslam SM, Houston KM, Harnett W, Reason AJ, Morris HR, Dell A. Structural studies of N-glycans of filarial parasites. Conservation of phosphorylcholine-substituted glycans among species and discovery of novel chito-oligomers. J. Biol. Chem. 1999;274:20953–20960. [PubMed] [Google Scholar]

115. Haslam SM, Khoo KH, Houston KM, Harnett W, Morris HR, Dell A. Characterisation of the phosphorylcholine-containing N-linked oligosaccharides in the excretory-secretory 62 kDa glycoprotein of Acanthocheilonema viteae. Mol. Biochem. Parasitol. 1997;85:53–66. [PubMed] [Google Scholar]

116. Morelle W, Haslam SM, Olivier V, Appleton JA, Morris HR, Dell A. Phosphorylcholine-containing N-glycans of Trichinella spiralis: identification of multiantennary lacdiNAc structures. Glycobiology. 2000;10:941–950. [PubMed] [Google Scholar]

117. Hanneman AJ, Rosa JC, Ashline D, Reinhold V. Isomer and glycomer complexities of core GlcNAcs in Caenorhabditis elegans. Glycobiology. 2006;16:874–890. [PubMed] [Google Scholar]

118. Paschinger K, Hackl M, Gutternigg M, Kretschmer-Lubich D, Stemmer U, Jantsch V, Lochnit G, Wilson IBH. A deletion in the Golgi α-mannosidase II gene of Caenorhabditis elegans results in unexpected non-wild type N-glycan structures. J. Biol. Chem. 2006;281:28265–28277. [PMC free article] [PubMed] [Google Scholar]

119. Paschinger K, Gonzalez-Sapienza GG, Wilson IBH. Mass spectrometric analysis of the immunodominant glycan epitope of Echinococcus granulosus antigen Ag5. Int. J. Parasitol. 2012;42:279–285. [PMC free article] [PubMed] [Google Scholar]

120. Sugita M, Fujii H, Dulaney JT, Inagaki F, Suzuki M, Suzuki A, Ohta S. Structural elucidation of two novel amphoteric glycosphingolipids from the earthworm, Pheretima hilgendorfi. Biochim. Biophys. Acta. 1995;1259:220–226. [PubMed] [Google Scholar]

121. Gerdt S, Dennis RD, Borgonie G, Schnabel R, Geyer R. Isolation, characterization and immunolocalization of phosphorylcholine-substituted glycolipids in developmental stages of Caenorhabditis elegans. Eur. J. Biochem. 1999;266:952–963. [PubMed] [Google Scholar]

122. Lochnit G, Dennis RD, Ulmer AJ, Geyer R. Structural elucidation and monokine-inducing activity of two biologically active zwitterionic glycosphingolipids derived from the porcine parasitic nematode Ascaris suum. J. Biol. Chem. 1998;273:466–474. [PubMed] [Google Scholar]

123. Noda N, Tanaka R, Miyahara K, Kawasaki T. Isolation and characterization of a novel type of glycosphingolipid from Neanthes diversicolor. Biochim. Biophys. Acta. 1993;1169:30–38. [PubMed] [Google Scholar]

124. Vanbeselaere J, Yan S, Joachim A, Paschinger K, Wilson IBH. The parasitic nematode Oesophagostomum dentatum synthesizes unusual glycosaminoglycan-like O-glycans. Glycobiology. 2018;28:474–481. doi: 10.1093/glycob/cwy045. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Simenel C, Coddeville B, Delepierre M, Latgé JP, Fontaine T. Glycosylinositolphosphoceramides in Aspergillus fumigatus. Glycobiology. 2008;18:84–96. doi: 10.1093/glycob/cwm122. [PubMed] [CrossRef] [Google Scholar]

126. Unkefer CJ, Jackson C, Gander JE. The 5-O-β-D-galactofuranosyl-containing glycopeptide from Penicillium charlesii. Identification of phosphocholine attached to C-6 of mannopyranosyl residues of the mannan region. J. Biol. Chem. 1982;257:2491–2497. [PubMed] [Google Scholar]

127. Maes E, Garenaux E, Strecker G, Leroy Y, Wieruszeski JM, Brassart C, Guerardel Y. Major O-glycans from the nest of Vespula germanica contain phospho-ethanolamine. Carbohydr. Res. 2005;340:1852–1858. doi: 10.1016/j.carres.2005.05.008. [PubMed] [CrossRef] [Google Scholar]

128. Seppo A, Moreland M, Schweingruber H, Tiemeyer M. Zwitterionic and acidic glycosphingolipids of the Drosophila melanogaster embryo. Eur. J. Biochem. 2000;267:3549–3558. [PubMed] [Google Scholar]

129. Helling F, Dennis RD, Weske B, Nores G, Peter-Katalinic J, Dabrowski U, Egge H, Wiegandt H. Glycosphingolipids in insects. The amphoteric moiety, N-acetylglucosamine-linked phosphoethanolamine, distinguishes a group of ceramide oligosaccharides from the pupae of Calliphora vicina (Insecta: Diptera) Eur. J. Biochem. 1991;200:409–421. [PubMed] [Google Scholar]

130. Hykollari A, Eckmair B, Voglmeir J, Jin C, Yan S, Vanbeselaere J, Razzazi-Fazeli E, Wilson IB, Paschinger K. More than just Oligomannose: an N-glycomic comparison of Penicillium species. Mol. Cell. Proteomics. 2016;15:73–92. doi: 10.1074/mcp.M115.055061. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Itasaka O, Hori T. Studies on glycosphingolipids of fresh-water bivalves. V. the structure of a novel ceramide octasaccharide containing mannose-6-phosphate found in the bivalve, Corbicula sandai. J. Biochem. 1979;85:1469–1481. [PubMed] [Google Scholar]

132. Cipollo JF, Awad A, Costello CE, Robbins PW, Hirschberg CB. Biosynthesis in vitro of Caenorhabditis elegans phosphorylcholine oligosaccharides. Proc. Natl. Acad. Sci. U. S. A. 2004;101:3404–3408. [PMC free article] [PubMed] [Google Scholar]

133. Houston KM, Sutharsan R, Steiger CN, Schachter H, Harnett W. Gene inactivation confirms the identity of enzymes involved in nematode phosphorylcholine-N-glycan synthesis. Mol. Biochem. Parasitol. 2008;157:88–91. [PubMed] [Google Scholar]

134. Ishida N, Irikura D, Matsuda K, Sato S, Sone T, Tanaka M, Asano K. Molecular cloning and expression of a novel cholinephosphotransferase involved in glycoglycerophospholipid biosynthesis of mycoplasma fermentans. Curr. Microbiol. 2009;58:535–540. doi: 10.1007/s00284-009-9362-6. [PubMed] [CrossRef] [Google Scholar]

135. Mikolajek H, Kolstoe SE, Pye VE, Mangione P, Pepys MB, Wood SP. Structural basis of ligand specificity in the human pentraxins, C-reactive protein and serum amyloid P component. J. Mol. Recognit. 2011;24:371–377. doi: 10.1002/jmr.1090. [PubMed] [CrossRef] [Google Scholar]

136. Goodridge HS, Marshall FA, Else KJ, Houston KM, Egan C, Al-Riyami L, Liew FY, Harnett W, Harnett MM. Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62. J. Immunol. 2005;174:284–293. [PubMed] [Google Scholar]

137. Matsuura F. The identification of aminoalkylphosphonyl cerebrosides in the marine gastropod, Monodonta labio. J. Biochem. 1979;85:433–441. [PubMed] [Google Scholar]

138. Araki S, Satake M, Ando S, Hayashi A, Fujii N. Characterization of a diphosphonopentaosylceramide containing 3-O-methylgalactose from the skin of Aplysia kurodai (sea hare) J. Biol. Chem. 1986;261:5138–5144. [PubMed] [Google Scholar]

139. Araki S, Abe S, Ando S, Fujii N, Satake M. Isolation and characterization of a novel 2-aminoethylphosphonyl-glycosphingolipid from the sea hare, Aplysia kurodai. J. Biochem. 1987;101:145–152. [PubMed] [Google Scholar]

140. Araki S, Abe S, Odani S, Ando S, Fujii N, Satake M. Structure of a triphosphonopentaosylceramide containing 4-O-methyl-N-acetylglucosamine from the skin of the sea hare, Aplysia kurodai. J. Biol. Chem. 1987;262:14141–14145. [PubMed] [Google Scholar]

141. Hayashi A, Matsubara T. A new homolog of Phosphonoglycosphingolipid, N-Methylaminoethylphosphonyltrigalactosylceramide. Biochim. Biophys. Acta. 1989;1006:89–96. doi: 10.1016/0005-2760(89)90327-5. [CrossRef] [Google Scholar]

142. Araki S, Yamada S, Abe S, Waki H, Kon K, Itonori S, Sugita M, Ando S. Characterization of a novel triphosphonooctaosylceramide from the eggs of the sea hare, Aplysia kurodai. J. Biochem. 2001;129:93–100. [PubMed] [Google Scholar]

143. Macrae JI, Acosta-Serrano A, Morrice NA, Mehlert A, Ferguson MA. Structural characterization of NETNES, a novel glycoconjugate in Trypanosoma cruzi epimastigotes. J. Biol. Chem. 2005;280:12201–12211. [PubMed] [Google Scholar]

144. Hård K, Van Doorn JM, Thomas-Oates JE, Kamerling JP, Van der Horst DJ. Structure of the Asn-linked oligosaccharides of apolipophorin III from the insect Locusta migratoria. Carbohydrate- linked 2-aminoethylphosphonate as a constituent of a glycoprotein. Biochemistry. 1993;32:766–775. [PubMed] [Google Scholar]

145. Urai M, Nakamura T, Uzawa J, Baba T, Taniguchi K, Seki H, Ushida K. Structural analysis of O-glycans of mucin from jellyfish (Aurelia aurita) containing 2-aminoethylphosphonate. Carbohydr. Res. 2009;344:2182–2187. doi: 10.1016/j.carres.2009.08.001. [PubMed] [CrossRef] [Google Scholar]