Bài tập mẫu phương pháp phần tử hữu hạn năm 2024

Phương pháp phần tử hữu hạn là một môn học trong chương trình đào tạo bậc đại học. Đây là môn học trước của môn Phần tử hữu hạn nâng cao trong chương trình cao học. Do đó, cuốn sách này được biên soạn nhằm mục đích giúp học sinh viên đạt được kết quả cao hơn trong học tập. Đồng thời, cuốn sách này là tài liệu giúp học viên cao học ôn lại những kiến thức của môn Phương pháp phần tử hữu hạn trước khi học môn Phương pháp phần tử hữu hạn nâng cao. Ngoài ra, cuốn sách còn nhằm mục đích giúp người đọc nắm kỹ về phương pháp phần tử hữu hạn để có thể sử dụng trong tính toán sản xuất thực tế và nghiên cứu về kết cấu.

MỤC LỤC

Lời nói đầu Chương 1 Phần tử thanh chịu biến dạng dọc trục Chương 2 Phần tử thanh trong dàn phẳng Chương 3 Phần tử dầm chịu uốn Chương 4 Phần tử khung Tài liệu tham khảo

Bài tập mẫu phương pháp phần tử hữu hạn năm 2024

5 , 1 Đánh giá95000 -95000

5 , 1 Đánh giá82000 -82000

Bài tập mẫu phương pháp phần tử hữu hạn năm 2024

5 , 1 Đánh giá49000 -49000

Bài tập mẫu phương pháp phần tử hữu hạn năm 2024

5 , 1 Đánh giá50000 -50000

Bài tập mẫu phương pháp phần tử hữu hạn năm 2024

5 , 1 Đánh giá36000 -36000

Bài tập mẫu phương pháp phần tử hữu hạn năm 2024

5 , 1 Đánh giá45000 -45000

Bài tập mẫu phương pháp phần tử hữu hạn năm 2024

5 , 1 Đánh giá82000 -82000

Bài tập mẫu phương pháp phần tử hữu hạn năm 2024

5 , 1 Đánh giá31000 -31000

Bài tập mẫu phương pháp phần tử hữu hạn năm 2024

5 , 1 Đánh giá71000 -71000

Bài tập mẫu phương pháp phần tử hữu hạn năm 2024

5 , 1 Đánh giá72000 -72000

  • Chào mừng "Ngày sách Việt Nam 21/4" năm 2024
  • Vòng Sơ Khảo Cuộc Thi Đại Sứ Văn Hóa Đọc Năm 2024
  • Ngày hội văn hóa đọc lần V
  • Cuộc Thi Ảnh “Khoảnh Khắc VNUHCM Libraries”
  • Ngày hội văn hóa đọc lần II
  • Ngày hội văn hóa đọc lần IV
  • Ngày hội văn hóa đọc lần III
  • Tiếp GS Omer Mert Denizci, Trường ĐH Marmara Thổ Nhĩ Kỳ
  • Tiếp Cô Claudia Tarzariol Từ The University Of Trento, Italy (Unitrento)
  • Tiến sĩ kiều bào Mỹ tặng sách trị giá 150.000 USD cho sinh viên bách khoa
  • Khảo sát ý kiến bạn đọc
  • Trực tuyến: 2
  • Hôm nay: 522
  • Tuần này: 22207
  • Tuần trước: 33945
  • Tháng trước: 51534
  • Tất cả: 3958036

.png)

Địa chỉ: 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM Tel: 38647256 ext. 5419, 5420 Email: [email protected]

  • 1. VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC DÂN LẬP HẢI PHÒNG ----- PHẠM ĐỨC CƯỜNG PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN TÍNH KHUNG MỘT NHỊP CÓ XÉT ĐẾN BIẾN DẠNG TRƯỢT NGANG CHỊU TÁC DỤNG CỦA TẢI TRỌNG PHÂN BỐ ĐỀU Chuyên ngành: Kỹ thuật Xây dựng Công trình Dân dụng & Công nghiệp Mã số: 60.58.02.08 LUẬN VĂN THẠC SỸ KỸ THUẬT NGƯỜI HƯỚNG DẪN KHOA HỌC TS. ĐỖ TRỌNG QUANG Hải Phòng, 2017
  • 2. xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả trong luận văn là trung thực và chưa từng được ai công bố trong bất kỳ công trình nào khác. Tác giả luận văn Phạm Đức Cường
  • 3. giả luận văn xin trân trọng bày tỏ lòng biết ơn sâu sắc nhất đối với TS. Đỗ Trọng Quang vì đã tận tình giúp đỡ và cho nhiều chỉ dẫn khoa học có giá trị cũng như thường xuyên động viên, tạo mọi điều kiện thuận lợi, giúp đỡ tác giả trong suốt quá trình học tập, nghiên cứu hoàn thành luận văn. Tác giả xin chân thành cảm ơn các nhà khoa học, các chuyên gia trong và ngoài trường Đại học Dân lập Hải phòng đã tạo điều kiện giúp đỡ, quan tâm góp ý cho bản luận văn được hoàn thiện hơn. Tác giả xin trân trọng cảm ơn các cán bộ, giáo viên của Khoa xây dựng, Phòng đào tạo Đại học và Sau đại học- trường Đại học Dân lập Hải phòng, và các đồng nghiệp đã tạo điều kiện thuận lợi, giúp đỡ tác giả trong quá trình nghiên cứu và hoàn thành luận văn. Tác giả luận văn Phạm Đức Cường
  • 4. ĐOAN ............................................................................................. i LỜI CẢM ƠN.................................................................................................iii MỤC LỤC....................................................................................................... iv MỞ ĐẦU .......................................................................................................... 1 CHƯƠNG 1.BÀI TOÁN CƠ HỌC KẾT CẤU VÀ CÁC PHƯƠNG PHÁP GIẢI.................................................................................................................. 3 1.1. Bài toán cơ học kết cấu .............................................................................. 3 1.2. Các phương pháp giải hiện nay.................................................................. 3 1.2.1. Phương pháp lực ..................................................................................... 4 1.2.2. Phương pháp chuyển vị........................................................................... 4 1.2.3. Phương pháp hỗn hợp và phương pháp liên hợp .................................... 4 1.2.4. Phương pháp sai phân hữu hạn ............................................................... 5 1.2.5. Phương pháp hỗn hợp sai phân – biến phân ........................................... 5 CHƯƠNG 2: PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN................................. 6 2.1. Phương pháp phần tử hữu hạn ................................................................... 6 2.1.1 Nội dung phương pháp phần tử hữa hạn theo mô hình chuyển vị........... 7 2.1.1.1. Rời rạc hoá miền khảo sát ................................................................... 7 2.1.1.2. Chọn hàm xấp xỉ................................................................................... 8 2.1.1.3. Xây dựng phương trình cân bằng trong từng phần tử, thiết lập ma trận độ cứng  e K và vectơ tải trọng nút  e F của phần tử thứ e.............................. 9 2.1.1.5: Sử lý điều kiện biên của bài toán....................................................... 21 2.1.1.6. Giải hệ phương trình cân bằng.......................................................... 28 2.1.1.7. Xác định nội lực ................................................................................. 28 2.1.2. Cách xây dựng ma trận độ cứng của phần tử chịu uốn......................... 28 2.1.3. Cách xây dựng ma trận độ cứng tổng thể của kết cấu .......................... 31
  • 5. DẦM CÓ XÉT ĐẾN BIẾN DẠNG TRƯỢT NGANG.......................................................................................................... 36 3.1. Lý thuyết dầm Euler – Bernoulli.............................................................. 36 3.1.1. Dầm chịu uốn thuần túy phẳng ............................................................. 36 2.1.1. Dầm chịu uốn ngang phẳng .................................................................. 40 3.2. Lý thuyết dầm có xét biến dạng trượt ngang ........................................... 48 3.3. Giải bài toán khung có xét đến biến dạng trượt ngang bằng phương pháp phần tử hữu hạn............................................................................................... 53 3.3.1. Bài toán khung ...................................................................................... 53 3.4. Các ví dụ tính toán khung ....................................................................... 55 KẾT LUẬN VÀ KIẾN NGHỊ ...................................................................... 86 KẾT LUẬN..................................................................................................... 86 KIẾN NGHỊ .................................................................................................... 86 Danh mục tài liệu tham khảo .......................................................................... 87
  • 6. cơ học kết cấu hiện nay nói chung được xây dựng theo bốn đường lối đó là: Xây dựng phương trình vi phân cân bằng phân tố; Phương pháp năng lượng; Phương pháp nguyên lý công ảo và Phương pháp sử dụng trực tiếp Phương trình Lagrange. Các phương pháp giải gồm có: Phương pháp được coi là chính xác như, phương pháp lực, phương pháp chuyển vị, phương pháp hỗn hợp, phương pháp liên hợp và các phương pháp gần đúng như: Phương pháp phần tử hữu hạn, phương pháp sai phân hữu hạn, phương pháp hỗn hợp sai phân - biến phân. Phương pháp phần tử hữu hạn là phương pháp được xây dựng dựa trên ý tưởng rời rạc hóa công trình thành những phần tử nhỏ (số phần tử là hữu hạn). Các phần tử nhỏ được nối lại với nhau thông qua các phương trình cân bằng và các phương trình liên tục. Để giải quyết bài toán cơ học kết cấu, có thể tiếp cận phương pháp này theoba mô hình gồm:Mô hình chuyển vị, xem chuyển vị là đại lượng cần tìm và hàm nội suy biểu diễn gần đúng dạng phân bố của chuyển vị trong phần tử; Mô hình cân bằng,hàm nội suy biểu diễn gần đúng dạng phân bố của ứng suất hay nội lực trong phần tử và mô hình hỗn hợp, coi các đại lượng chuyển vị và ứng suất là hai yếu tố độc lập riêng biệt. Các hàm nội suy biểu diễn gần đúng dạng phân bố của cả chuyển vị lẫn ứng suất trong phần tử. Đối tượng, phương pháp và phạm vi nghiên cứu của đề tài Trong luận văn này, tác giả sử dụng phương phần tử hữu hạn theo mô hình chuyển vị để xây dựng và giải bài toán khung phẳng chịu tác dụng của tải trọng tĩnhphân bố đều. Mục đích nghiên cứu của đề tài “Phương pháp phần tử hữu hạn tính khung một nhịp có xét đến biến dạng trượt ngang chịu tác dụng của tải trọng phân bố đều” Nhiệm vụ nghiên cứu của đề tài
  • 7. và giới thiệu các phương pháp giải bài toán cơ học kết cấu hiện nay. 2. Trình bày lý thuyết dầm Euler - Bernoulli và lý thuyết dầm có xét đến biến dạng trượt ngang. 3. Trình bày phương pháp phần tử hữu hạn và áp dụng để giải bài toán khung phẳng, chịu tác dụng của tải trọng tĩnhphân bố đều. 4. Lập chương trình máy tính điện tử cho các bài toán nêu trên.
  • 8. CƠ HỌC KẾT CẤU VÀ CÁC PHƯƠNG PHÁP GIẢI Trong chương này giới thiệu bài toán cơ học kết cấu (bài toán tĩnh) và các phương pháp giải thường dùng hiện nay. 1.1. Bài toán cơ học kết cấu Bài toán cơ học kết cấu nhằm xác định nội lực và chuyển vị của hệ thanh, tấm, vỏ dưới tác dụng của các loại tải trọng, nhiệt độ, chuyển vị cưỡng bức,…và được chia làm hai loại: - Bài toán tĩnh định: là bài toán có cấu tạo hình học bất biến hình và đủ liên kết tựa với đất, các liên kết sắp xếp hợp lý, chịu các loại tải trọng. Để xác định nội lực và chuyển vị chỉ cần dùng các phương trình cân bằng tĩnh học là đủ; - Bài toán siêu tĩnh: là bài toán có cấu tạo hình học bất biến hình và thừa liên kết (nội hoặc ngoại) chịu các loại tải trọng, nhiệt độ, chuyển vị cưỡng bức,…Để xác định nội lực và chuyển vị ngoài các phương trình cân bằng ta còn phải bổ sung các phương trình biến dạng. Nếu tính đến tận ứng suất, có thể nói rằng mọi bài toán cơ học vật rắn biến dạng nói chung và bài toán cơ học kết cấu nói riêng đều là bài toán siêu tĩnh. 1.2. Các phương pháp giải hiện nay Đã có nhiều phương pháp để giải bài toán siêu tĩnh. Hai phương pháp truyền thống cơ bản là phương pháp lực và phương pháp chuyển vị. Khi sử dụng chúng thường phải giải hệ phương trình đại số tuyến tính. Số lượng các phương trình tùy thuộc vào phương pháp phân tích. Từ phương pháp chuyển vị ta có hai cách tính gần đúng hay được sử dụng là H. Cross và G. Kani. Từ khi xuất hiện máy tính điện tử, người ta bổ sung thêm các phương pháp số khác như: Phương pháp phần tử hữu hạn; Phương pháp sai phân hữu hạn…
  • 9. lực Trong hệ siêu tĩnh ta thay các liên kết thừa bằng các lực chưa biết, còn giá trị các chuyển vị trong hệ cơ bản tương ứng với vị trí và phương của các lực ẩn số do bản thân các lực đó và do các nguyên nhân bên ngoài gây ra bằng không. Từ điều kiện này ta lập được hệ các phương trình đại số tuyến tính, giải hệ này ta tìm được các ẩn số và từ đó suy ra các đại lượng cần tìm. 1.2.2. Phương pháp chuyển vị Khác với phương pháp lực, phương pháp chuyển vị lấy chuyển vị tại các nút làm ẩn. Những chuyển vị này phải có giá trị sao cho phản lực tại các liên kết đặt thêm vào hệ do bản thân chúng và do các nguyên nhân bên ngoài gây ra bằng không. Lập hệ phương trình đại số tuyến tính thỏa mãn điều kiện này và giải hệ đó ta tìm được các ẩn, từ đó xác định các đại lượng còn lại. Hệ cơ bản trong phương pháp chuyển vị là duy nhất và giới hạn giải các bài toán phụ thuộc vào số các phần tử mẫu có sẵn. 1.2.3. Phương pháp hỗn hợp và phương pháp liên hợp Phương pháp hỗn hợp, phương pháp liên hợp là sự kết hợp song song giữa phương pháp lực và phương pháp chuyển vị. Trong phương pháp này ta có thể chọn hệ cơ bản theo phương pháp lực nhưng không loại bỏ hết các liên kết thừa mà chỉ loại bỏ các liên kết thuộc bộ phận thích hợp với phương pháp lực; hoặc chọn hệ cơ bản theo phương pháp chuyển vị nhưng không đặt đầy đủ các liên kết phụ nhằm ngăn cản toàn bộ các chuyển vị nút mà chỉ đặt các liên kết phụ tại các nút thuộc bộ phận thích hợp với phương pháp chuyển vị. Trường hợp đầu hệ cơ bản là siêu tĩnh, còn trường hợp sau hệ cơ bản là siêu động. Trong cả hai cách nói trên, bài toán ban đầu được đưa về hai bài toán độc lập: Một theo phương pháp lực và một theo phương pháp chuyển vị.
  • 10. sai phân hữu hạn Phương pháp sai phân hữu hạn cũng là thay thế hệ liên tục bằng mô hình rời rạc, song hàm cần tìm (hàm mang đến cho phiếm hàm giá trị dừng),nhận những giá trị gần đúng tại một số hữu hạn điểm của miền tích phân, còn giá trị các điểm trung gian sẽ được xác định nhờ một phương pháp tích phân nào đó.Phương pháp này cho lời giải số của phương trình vi phân về chuyển vị và nội lực tại các điểm nút. Thông thường ta phải thay đạo hàm bằng các sai phân của hàm tại các nút.Phương trình vi phân của chuyển vị hoặc nội lực được viết dưới dạng sai phân tại mỗi nút, biểu thị quan hệ của chuyển vị tại một nút và các nút lân cận dưới tác dụng của ngoại lực. 1.2.5. Phương pháp hỗn hợp sai phân – biến phân Kết hợp phương pháp sai phân với phương pháp biến phân ta có một phương pháp linh động hơn: Hoặc là sai phân các đạo hàm trong phương trình biến phân hoặc là sai phân theo một phương và biến phân theo một phương khác (đối với bài toán hai chiều).
  • 11. PHẦN TỬ HỮU HẠN Trong chương trình bày một số khái niệm cơ bản của phương pháp phần tử hữu hạn, để phục vụ cho việc xây dựng các bài toán xác định nội lực và chuyển vị cho các dầm liên tục chịu tải trọng tĩnh tập trung theo phương pháp phần tử hữu hạn ở chương 3. 2.1. Phương pháp phần tử hữu hạn Phương pháp phần tử hữu hạn là một phương pháp số đặc biệt có hiệu quả để tìm dạng gần đúng của một hàm chưa biết trong miền xác định V của nó. Tuy nhiên phương pháp phần tử hữu hạn không tìm dạng xấp xỉ của hàm cần tìm trên toàn miền V mà chỉ trong từng miền con eV (phần tử) thuộc miền xác định V. Do đó phương pháp này rất thích hợp với hàng loạt bài toán vật lý và kỹ thuật trong đó hàm cần tìm được xác định trên các miền phức tạp gồm nhiều vùng nhỏ có đặc tính hình học, vật lý khác nhau, chịu những điều kiện biên khác nhau. Phương pháp ra đời từ trực quan phân tích kết cấu, rồi được phát biểu một cách chặt chẽ và tổng quát như một phương pháp biến phân hay phương pháp dư có trọng nhưng được xấp xỉ trên mỗi phần tử. Trong phương pháp phần tử hữu hạn chia kết cấu công trình thành một số hữu hạn các phần tử. Các phần tử này được nối với nhau tại các điểm định trước thường tại đỉnh phần tử (thậm trí tại các điểm trên biên phần tử) gọi là nút. Như vậy việc tính toán kết cấu công trình được đưa về tính toán trên các phần tử của kết cấu sau đó kết nối các phần tử này lại với nhau ta được lời giải của một kết cấu công trình hoàn chỉnh. Tương tự như phương pháp sai phân hữu hạn cũng chia công trình thành các đoạn nhỏ (phần tử) và các trạng thái chuyển vị (trường chuyển vị) v.v… được xác định tại các điểm nút sai phân. Sự khác biệt của hai phương pháp là Phương pháp sai phân hữu hạn sau khi tìm được các chuyển vị
  • 12. của sai phân còn các điểm nằm giữa hai nút được xác định bằng nội suy tuyến tính, còn phương pháp phân tử hữu hạn sau khi xác định được chuyển vị tại các nút của phần tử thì các điểm bên trong được xác định bằng hàm nội suy (hàm dạng). Với bài toán cơ học vật rắn biến dạng, tuỳ theo ý nghĩa vật lí của hàm nội suy có thể phân tích bài toán theo 3 loại mô hình sau: - Mô hình chuyển vị: Xem chuyển vị là đại lượng cần tìm và hàm nội suy biểu diễn gần đúng dạng phân bố của chuyển vị trong phần tử. - Mô hình cân bằng: Hàm nội suy biểu diễn gần đúng dạng phân bố của ứng suất hay nội lực trong phần tử. - Mô hình hỗn hợp: Coi các đại lượng chuyển vị và ứng suất là 2 yếu tố độc lập riêng biệt. Các hàm nội suy biểu diễn gần đúng dạng phân bố của cả chuyển vị lẫn ứng suất trong phần tử. Hiện nay, khi áp dụng phương pháp phần tử hữu hạn để giải các bài toán cơ học thường sử dụng phương pháp phần tử hữu hạn theo mô hình chuyển vị. Sau đây luận văn trình bài nội dung phương pháp phần tử hữu hạn theo mô hình chuyển vị. 2.1.1 Nội dung phương pháp phần tử hữa hạn theo mô hình chuyển vị Trong phương pháp phần tử hữu hạn - mô hình chuyển vị, thành phần chuyển vị được xem là đại lượng cần tìm. Chuyển vị được lấy xấp xỉ trong dạng một hàm đơn giản gọi là hàm nội suy (hay còn gọi là hàm chuyển vị). Trình tự phân tích bài toán theo phương pháp phần tử hữu hạn - mô hình chuyển vị có nội dung như sau: 2.1.1.1. Rời rạc hoá miền khảo sát Miền khảo sát (đối tượng nghiên cứu) được chia thành các miền con hay còn gọi là các phần tử có hình dạng hình học thích hợp. Các phần tử này được
  • 13. kết với nhau tại các nút nằm tại đỉnh hay biên của phần tử. Số nút của phần tử không lấy tuỳ tiện mà phụ thuộc vào hàm chuyển vị định chọn. Các phần tử thường có dạng hình học đơn giản (hình 2.1) Hình 2.1 Dạng hình học đơn giản của phần tử 2.1.1.2. Chọn hàm xấp xỉ Một trong những tư tưởng của phương pháp phần tử hữu hạn là xấp xỉ hoá đại lượng cần tìm trong mỗi miền con. Điều này cho phép ta khả năng thay thế việc tìm nghiệm vốn phức tạp trong toàn miền V bằng việc tìm nghiệm tại các nút của phần tử, còn nghiệm trong các phần tử được tìm bằng việc dựa vào hàm xấp xỉ đơn giản. Giả thiết hàm xấp xỉ (hàm chuyển vị) sao cho đơn giản đối với việc tính toán nhưng phải thoả mãn điều kiện hội tụ. Thường chọn dưới dạng hàm đa thức. Biểu diễn hàm xấp xỉ theo tập hợp giá trị các thành phần chuyển vị và có thể cả đạo hàm của nó tại các nút của phần tử. Hàm xấp xỉ này thường được chọn là hàm đa thức vì các lý do sau: - Đa thức khi được xem như một tổ hợp tuyến tính của các đơn thức thì tập hợp các đơn thức thoả mãn yêu cầu độc lập tuyến tính như yêu cầu của Ritz, Galerkin. - Hàm xấp xỉ dạng đa thức thường dễ tính toán, dễ thiết lập công thức khi xây dựng các phương trình của phần tử hữu hạn và tính toán bằng máy tính. Đặc biệt là dễ tính đạo hàm, tích phân.
  • 14. năng tăng độ chính xác bằng cách tăng số bậc của đa thức xấp xỉ (về lý thuyết đa thức bậc vô cùng sẽ cho nghiệm chính xác). Tuy nhiên, khi thực hành tính toán ta thường lấy đa thức xấp xỉ bậc thấp mà thôi. Tập hợp các hàm xấp xỉ sẽ xây dựng nên một trường chuyển vị xác định một trạng thái chuyển vị duy nhất bên trong phần tử theo các thành phần chuyển vị nút. Từ trường chuyển vị sẽ xác định một trạng thái biến dạng, trạng thái ứng suất duy nhất bên trong phần tử theo các giá trị của các thành phần chuyển vị nút của phần tử. Khi chọn bậc của hàm đa thức xấp xỉ cần lưu ý các yêu cầu sau: - Các đa thức xấp xỉ cần thoả mãn điều kiện hội tụ. Đây là yêu cầu quan trọng vì phương pháp phần tử hữu hạn là một phương pháp số, do đó phải đảm bảo khi kích thước phần tử giảm thì kết quả sẽ hội tụ đến nghiệm chính xác. - Các đa thức xấp xỉ được chọn sao cho không mất tính đẳng hướng hình học. - Số tham số của các đa thức xấp xỉ phải bằng số bậc tự do của phần tử, tức là bằng số thành phần chuyển vị nút của phần tử. Yêu cầu này cho khả năng nội suy đa thức của hàm xấp xỉ theo giá trị đại lượng cần tìm, tức là theo giá trị các thành phần chuyển vị tại các điểm nút của phần tử. 2.1.1.3. Xây dựng phương trình cân bằng trong từng phần tử, thiết lập ma trận độ cứng  e K và vectơ tải trọng nút  e F của phần tử thứ e. Thiết lập mối quan hệ giữa ứng suất và chuyển vị nút phần tử Cần thiết lập biểu thức tính biến dạng và ứng suất tại một điểm bất kì trong phần tử thông qua ẩn cơ bản là chuyển vị nút phần tử  e  . Sử dụng các công thức trong Lí thuyết đàn hồi, mối quan hệ giữa biến dạng và chuyển vị :     u   (2.1) Ta có:    e u N  (2.2)
  • 15. - gọi là ma trận hàm dạng, chứa các toạ độ của các điểm nút của phần tử và các biến của điểm bất kì đang xét. Thay (2.2) vào (2.1), ta được:         e e N B      (2.3) trong đó :     B N  - ma trận chứa đạo hàm của hàm dạng. Theo lý thuyết đàn hồi quan hệ giữa ứng suất và biến dạng :     D   (2.4) Thay (2.3) vào (2.4), tađược : {} = [D][B]{}e (2.5) Thế năng toàn phần  e của phần tử Xét trường hợp phần tử chịu tải trọng tập trung tại nút  n e P (ứng với chuyển vị nút {}e ) và chịu tải trọng phân bố trên bề mặt phần tử có cường độ tại điểm M bất kì là   x y q q q        . Thiết lập biểu thức tính thế năng toàn phần e của phần tử theo công của ngoại lực We và thế năng biến dạng Ue của phần tử đó.  e = Ue - We (2.6) Công ngoại lực We (không xét lực thể tích) được tính:         T T e ne e S W P u q dS    Từ (2.2), ta có:                T TT T e e e u N u N N       Thay vào biểu thức tính công ngoại lực We trên, thu được:           TT T e ne e e S W P N q dS     (2.7) Thế năng biến dạng Ue của PT được tính: 
  • 16.  T e V 1 U dV 2    Thay (2.3) và (2.5) vào biểu thức tính thế năng biến dạng Ue của phần tử, ta có:          TT e e e V 1 U B D B dV 2          (2.8) Thay (2.7) và (2.8) vào (2.6) thu được thế năng toàn phần của phần tử :                    T TT T T e e e ne e e e e V S 1 U W B D B dV P N q dS 2                        (2.9) Đặt:       T e V K B D B dV  (2.10) [K]e- gọi là ma trận độ cứng phần tử. Vì [D] là ma trận đối xứng nên tích ([B]T [D] [B]) cũng đối xứng và do đó [K]e là ma trận đối xứng. Đặt:            T n n qe e e e S F P N q dS P P    (2.11) {F}e - là vectơ tải trọng nút của phần tử; được xây dựng bởi ngoại lực đặt tại nút phần tử {Pn}e và ngoại lực đặt trong phần tử qui về nút {Pq}e trong đó:      T q e S P N q dS  (2.12) Thay (2.11) và (2.12) vào (2.9), ta được :           T T e e e e ee 1 K F 2       (2.13) Thiết lập phương trình cân bằng Theo nguyên lí dừng thế năng toàn phần, điều kiện cân bằng của phần tử tại các điểm nút :   e e e 0 0        (2.14)
  • 17. đạo hàm riêng lần lượt với từng chuyển vị nút và cho bằng 0, thu được m phương trình (cho phần tử có m chuyển vị nút):   e 1 e 2e e e m 0 ...                             (2.15) Thay  etheo (2.13) vào (2.15) vàáp dụng phép lấy đạo hàm riêng đối với ma trận                     T T X A X X B 2 A X ; B X X            , thu được:      e ee K F 0   (2.16) Suy ra :      e ee K F  (2.17) trong đó:  e F - vectơtải trọng nút của phần tử thứ e xét trong hệ toạ độ địa phương;  e  - vectơ chuyển vị nút của phần tử thứ e xét trong hệ tọa độ địa phương;  e K - ma trận độ cứng của phần tử thứ e xét trong hệ tọa độ địa phương. Phương trình (2.17) chính là phương trình cân bằng của phần tử thứ e. 2.1.1.4. Ghép nối các phần tử xây dựng phương trình cân bằng của toàn hệ. Giả sử hệ kết cấu được rời rạc hoá thành m phần tử. Theo (2.17) ta viết được m phương trình cân bằng cho tất cả m phần tử trong hệ toạ độ riêng của từng phần tử. Sau khi chuyển về hệ tọa độ chung của toàn kết cấu, tiến tới gộp các phương trình cân bằng của từng phần tử trong cả hệ, thu được phương trình cân bằng cho toàn hệ kết cấu trong hệ tọa độ chung:
  • 18. (2.18) Do thứ tự các thành phần trong vectơ chuyển vị nút {’}e của từng phần tử khác với thứ tự trong vectơ chuyển vị nút {’} của toàn hệ kết cấu, nên cần lưu ý xếp đúng vị trí của từng thành phần trong [K’]e và {F’}e vào [K’] và {F’}. Việc sắp xếp này thường được áp dụng phương pháp số mã, hay sử dụng ma trận định vị phần tử [H]e để thiết lập các ma trận tổng thể và vectơ tải trọng nút tổng thể của toàn hệ kết cấu. Áp dụng ma trận định vị phần tử  e H Giả sử hệ kết cấu được rời rạc hoá thành m phần tử. Số bậc tự do của toàn hệ là n. Véctơ chuyển vị nút tổng thể có dạng:     T 1 2 n' ' ' ... '     (2.19) Với phần tử thứ e, số bậc tự do là ne, có véctơ chuyển vị nút trong hệ tọa độ chung là  e ' . Các thành phần của  e ' nằm trong số các thành phần của  ' . Do đó có sự biểu diễn quan hệ giữa 2 vectơ này như sau:  e ' = [H]e  ' (2.20) (ne x1) (ne x n) (n x 1) trong đó: [H]e - là ma trận định vị của phần tử e, nó cho thấy hình ảnh sắp xếp các thành phần của vectơ  e ' trong  ' . Dựa vào (2.13) ta xác định được thế năng toàn phần cho từng phần tử. Thay (2.20) vào (2.13), sau đó cộng gộp của m phần tử, xác định được thế năng toàn phần của hệ:                 m T TT T ee e e e e 1 1 ' H K' H ' ' H F' 2            (2.21)
  • 19. biểu diễn thế năng toàn phần của hệ theo vectơ chuyển vị nút tổng thể  ' . áp dụng nguyên lí thế năng dừng toàn phần sẽ có điều kiện cân bằng của toàn hệ tại điểm nút:                               1 e 2 n ' ' 0 ...' ' (2.22) Áp dụng phép lấy đạo hàm riêng đối với ma trận thu được:               m m T T ee e e e e 1 e 1 H K' H ' H F' 0             (2.23) Nhận thấy đây chính là phương trình cân bằng cho toàn hệ. So sánh với (2.18), thu được: Ma trận độ cứng tổng thể:         m T e e e e 1 K' H K' H    (2.24) Vectơ tải trọng nút tổng thể:      m T ee e 1 F' H F'    (2.25) Ví dụ 2.1: Xác định các ma trận định vị [H]e của dầm với 4 điểm nút, có các thành phần chuyển vị nút như trên hình 2.2. Lời giải Vectơ chuyển vị nút tổng thể của kết cấu trong hệ tọa độ chung:                 T 1 2 3 4 5 6 7 8 9 10 11'
  • 20. ví dụ 2.1 Vectơ chuyển vị nút của từng phần tử biểu diễn theo vectơ chuyển vị nút tổng thể:       1 1 2 2 3 1 1 4 9 5 10 6 11 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ' H ' 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0                                                                    4 1 5 2 62 2 7 10 8 11 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ' H ' 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0                                                        7 1 8 2 93 3 10 10 11 11 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ' H ' 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1                                                   1 2 3 A B C (1,2,3) (4,5,6) (7,8) y' x' (9,10,11) 4
  • 21.    4 1 5 2 4 4 9 10 11 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ' H ' 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0                                      Ma trận độ cứng, véc tơ tải tác dụng tại nút của từng phần tử:       11 12 13 14 15 16 1 22 23 24 25 26 2 33 34 35 36 3 11 44 45 46 4 55 56 5 66 6 a a a a a a e a a a a a e a a a a e K' ; F' a a a e đx a a e a e                                         11 12 13 14 15 1 22 23 24 25 2 33 34 35 322 44 45 4 55 5 b b b b b f b b b b f K' b b b ; F' f đx b b f b f                                        11 12 13 14 15 1 22 23 24 25 2 33 34 35 233 44 45 2 55 2 c c c c c g c c c c g K' c c c ; F' g đx c c g c g                                       11 12 13 14 1 22 23 24 2 44 33 34 3 44 4 d d d d h d d d h K' ; F' đx d d h d h                         
  • 22. cứng tổng thể:         4 T e e e e 1 K' H K' H        11 13 13 14 15 16 22 23 24 25 26 33 34 35 36 44 11 11 45 12 12 46 13 14 15 13 14 55 22 22 56 23 24 25 66 33 34 35 44 11 45 12 13 14 15 55 22 23 24 25 33 33 34 a a a a a a 0 0 0 0 0 a a a a a 0 0 0 0 0 a a a a 0 0 0 0 0 a b d a b d a b b b d d 0 a b d a b b b 0 0 0 K' a b b b 0 0 0 b c b c c c c b c c c c đx c e c                34 35 44 44 45 55 1 2 3 4 5 6 7 8 e c 9 c e c 10 c 11                                   Vectơ tải trọng nút tổng thể:       4 T ee e 1 F' H F'      1 2 3 4 1 1 5 2 2 6 3 4 1 5 2 3 3 4 4 5 e 1 e 2 e 3 e f h 4 e f h 5 F' e f 6 f g 7 f g 8 g h 9 g h 10 g 11                                     Việc sử dụng ma trận định vị [H]e trong (2.24) và (2.25) để tính ma trận độ cứng [K’] và vectơ tải trọng nút {F’} thực chất là sắp xếp các thành phần của ma trận độ cứng phần tử [K’]e và vectơ tải trọng nút phần tử {F’}e vào vị trí của nó trong ma trận độ cứng tổng thể [K’] và vectơ tải trọng nút tổng thể {F’}. Tuy nhiên trong thực tế người ta hay sử dụng phương pháp số mã. Phương pháp đánh số mã Khi tiến hành ghép nối ma trận độ cứng của kết cấu và véc tơ tải trọng tác dụng tại nút, ta làm theo các bước sau:
  • 23. đánh số mã của các thành phần véc tơ chuyển vị nút tại các nút của kết cấu và đánh số mã cho phần tử. - Lập bảng xác định mã cục bộ của các phần tử theo mã tổng thể của kết cấu. - Tính toán xác định các ma trận độ cứng, véc tơ tải trọng tác dụng tại các nút của phần tử theo mã cục bộ và tương ứng với mã tổng thể trong hệ tọa độ chung. - Tiến hành ghép nối ma trận độ cứng và véctơ tải trọng tác dụng nút của các phần tử thành ma trận độ cứng và véctơ tải trọng tác dụng nút của toàn bộ hệ kết cấu trong hệ tọa độ chung theo công thức.  ' ' ij ij e k k  (2.26) trong đó: + i, j: là số hiệu mã tổng thể của toàn bộ kết cấu trong hệ tọa độ chung; + ' ijk : là hệ số của trong ma trận độ cứng của toàn bộ kết cấu tương ứng với hàng có số hiệu mã tổng thể ivà cột có số hiệu mã tổng thể j trong hệ tọa độ chung; +  ' ij e k : là hệ số của ma ma trận độ cứng của phần tử tương ứng với hàng có số hiệu mã tổng thể ivà cột có số hiệu mã tổng thể j trong hệ tọa độ chung Ví dụ 2.2: Thiết lập ma trận độ cứng tổng thể [K’] và vectơ tải trọng nút{F’} của toàn hệ kết cấu của hệ trên hình 2.3. Hình 2.3 Hình ví dụ 2.2 1 2 3 A B C (1,2,3) (4,5,6) (7,8) y' x' (9,10,11) 4  0
  • 24. số mã của các thành phần véc tơ chuyển vị nút tại các nút của kết cấu và đánh số mã cho các phần tử như hình. - Lập bảng xác định mã cục bộ của các phần tử theo mã tổng thể của kết cấu. Phần tử Mã cục bộ TT Loại  1 2 3 4 5 6 Số mã toàn thể 1 90 1 2 3 4 5 6 2 0 4 5 6 7 8 3 -90 7 8 9 10 11 4 0 4 5 9 10 - Tính toán xác định các ma trận độ cứng  e K ' , véc tơ tải trọng tác dụng tại các nút  e F' của phần tử theo mã cục bộ và tương ứng với mã tổng thể trong hệ tọa độ chung. CB 1 2 3 4 5 6       11 12 13 14 15 16 1 22 23 24 25 26 2 33 34 35 36 3 11 44 45 46 4 55 56 5 66 6 a a a a a a e1 1 1 a a a a a e2 2 2 a a a a e3 3 3 K' ; F' a a a e4 4 4 đx a a e5 5 5 a e6 6 6                                   1 2 3 4 5 6 TT
  • 25. 3 4 5       11 12 13 14 15 1 22 23 24 25 2 33 34 35 322 44 45 4 55 5 b b b b b f1 4 4 b b b b f2 5 5 K' b b b ; F' f3 6 6 đx b b f4 7 7 b f5 8 8                                  4 5 6 7 8 TT CB 1 2 3 4 5       11 12 13 14 15 1 22 23 24 25 2 33 34 35 233 44 45 2 55 2 c c c c c g1 7 7 c c c c g2 8 8 K' c c c ; F' g3 9 9 đx c c g4 10 10 c g5 11 11                                 7 8 9 10 11 TT CB 1 2 3 4       11 12 13 14 1 22 23 24 2 44 33 34 3 44 4 d d d d h1 4 4 d d d h2 5 5 K' ; F' đx d d h3 9 9 d h4 10 10                          4 5 9 10 TT - Tiến hành ghép nối ma trận độ cứng và véctơ tải trọng tác dụng nút của các phần tử thành ma trận độ cứng  K' và véctơ tải trọng tác dụng nút  F' của toàn bộ hệ kết cấu trong hệ tọa độ chung theo công thức.
  • 26. 13 13 14 15 16 22 23 24 25 26 33 34 35 36 44 11 11 45 12 12 46 13 14 15 13 14 55 22 22 56 23 24 25 66 33 34 35 44 11 45 12 13 14 15 55 22 23 24 25 33 33 34 a a a a a a 0 0 0 0 0 a a a a a 0 0 0 0 0 a a a a 0 0 0 0 0 a b d a b d a b b b d d 0 a b d a b b b 0 0 0 K' a b b b 0 0 0 b c b c c c c b c c c c đx c e c                34 35 44 44 45 55 1 2 3 4 5 6 7 8 e c 9 c e c 10 c 11                                     1 2 3 4 1 1 5 2 2 6 3 4 1 5 2 3 3 4 4 5 e 1 e 2 e 3 e f h 4 e f h 5 F' e f 6 f g 7 f g 8 g h 9 g h 10 g 11                                      2.1.1.5: Sử lý điều kiện biên của bài toán Phương pháp phần tử hữu hạn là cuối cùng đưa về giải phương trình toán học:     K' ' F'  ( 2.27) Để phương trình này không có nghiệm tầm thường thì điều kiện định thức của ma trận [K’] khác 0 ( det [K’] khác 0 ), khi đó phương trình không suy biến. Với bài toán kết cấu, điều này chỉ đạt được khi điều kiện biên được thoả mãn (kết cấu phải bất biến hình). Đó là điều kiện cho trước một số chuyển vị nút nào đó bằng 0 hay bằng một giá trị xác định hoặc một số chuyển vị nút phải liên hệ với nhau. Sau khi áp đặt điều kiện biên vào, phương trình cân bằng của toàn hệ kết cấu trong hệ tọa độ chung có dạng:
  • 27. * * * K F     (2.28) Trong thực tế khi phân tích kết cấu thường gặp 2 điều kiện biên sau: - Biên làm một hoặc nhiều thành phần chuyển vị bằng 0. - Biên làm một hoặc nhiều thành phần chuyển vị có một giá trị xác định Khi biên có thành phần chuyển vị nào đó bằng 0 Thành phần chuyển vị tại một nút của phần tử bằng 0 do tương ứng với các thành phần chuyển vị này là các liên kết với đất, ta xử lí bằng cách: - Khi đánh mã chuyển vị cho toàn bộ hệ, những thành phần chuyển tại nút nào đó bằng 0 thì ghi mã của chuyển vị đó là 0. Việc đánh số mã toàn thể của chuyển vị nút theo thứ tự và vectơ chuyển vị nút của toàn hệ chỉ bao gồm các chuyển vị nút còn lại. - Khi lập ma trận  e K ' và vectơ  e F' của từng PT, các hàng và cột tương ứng với số mã chuyển vị nút bằng không thì không cần tính. Và khi thiết lập ma trận độ cứng tổng thể [K’] và vectơ tải trọng nút tổng thể {F’} thì những hàng và cột nào có mã bằng 0 thì ta loại bỏ hàng, cột. Ví dụ 2.3: Thiết lập ma trận độ cứng tổng thể [K’] và vectơ tải trọng nút {F’} của toàn hệ kết cấu như hình 2.4 (có xét tới điều kiện biên). Hình 2.4 Hình ví dụ 2.3 Lời giải: Lập bảng số mã khi xét tới điều kiện biên: 1 2 3 A B C D(0,0,0) (0,0,0) (1,2,3) (4,5) y' x'  
  • 28. cục bộ TT Loại  1 2 3 4 5 6 Số mã toàn thể 1 90 0 0 0 1 2 3 2 0 1 2 3 4 5 3 -30 4 5 0 0 0 Ma trận độ cứng  e K ' và vectơ tải trọng nút  e F' của từng phần tử trong hệ trục tọa độ chung: CB 1 2 3 4 5 6      11 44 45 46 4 55 56 5 66 6 x x x x x x x1 0 0 x x x x x x2 0 0 x x x x x3 0 0 K' ; F' a a a d4 1 1 đx a a d5 2 2 a d6 3 3                                   0 0 0 1 2 3 TT CB 1 2 3 4 5       11 12 13 14 15 1 22 23 24 25 2 33 34 35 322 44 45 4 55 5 b b b b b e1 1 1 b b b b e2 2 2 K' b b b ; F' e3 3 3 đx b b e4 4 4 b e5 5 5                                  1 2 3 0 0 TT CB 1 2 3 4 5
  • 29.  11 12 1 22 2 33 1 c c x x x 4 f 4 2 c x x x 5 f 5 K' ; F'3 x x x 0 x 0 4 đx x x 0 x 0 5 x 0 x 0                                  4 5 0 0 0 TT Căn cứ vào bảng số mã, thu được ma trận độ cứng và vectơ tải trọng nút tổng thể (có xét tới điều kiện biên) như sau:                                    44 11 45 12 46 13 14 15 55 22 56 23 24 25 66 33 34 35 44 11 45 12 55 22 T 4 1 5 2 6 3 4 1 5 2 a b a b a b b b 1 a b a b b b 2 K * a b b b 3 đx b c b c 4 b c 5 1 2 3 4 5 F* d e d e d e e f e f                           Khi biên có thành phần chuyển vị cho trước một giá trị Khi thành phần chuyển vị tại một nút nào đó cho trước một giá trị xác định, thí dụ m = a (hay liên kết tương ứng với các thành phần chuyển vị nút m chịu chuyển vị cưỡng bức có giá trị bằng a). Lúc này ta có thể giải quyết bài toán này theo 2 cách: Cách 1: Khi đánh số mã của bậc tự do (các thành phần chuyển vị) tổng thể kết cấu thì thành phần chuyển vị tại nút có chuyển vị bằng a ta vẫn đánh mã bình thường chẳng hạn mã là m. Sau khi lập được ma trận độ cứng tổng thể [K’] và vectơ tải trọng nút tổng thể {F’} thay thế số hạng mmk trong ma trận thể [K’] bằng  mmk A và thay số hạng tại hàng m trong ma trận {F’} là mf bằng  mmk A a .
  • 30. Thiết lập ma trận độ cứng tổng thể [K’] và vectơ tải trọng nút {F’} của toàn hệ kết cấu như hình 2.5 (có xét tới điều kiện biên). Hình 2.5 Hình ví dụ 2.4 Lời giải Hệ được đánh số phần tử và số mã chuyển vị tổng thể của kết cấu như hình 2.5. Bảng số mã khi xét tới điều kiện biên: Phần tử Mã cục bộ TT Loại  1 2 3 4 5 6 Số mã toàn thể 1 90 0 0 0 1 2 3 2 0 1 2 3 4 5 3 -30 4 5 0 6 0 Ma trận độ cứng  e K' và vectơ tải trọng nút  e F' của từng phần tử trong hệ trục tọa độ chung: CB 1 2 3 4 5 6 a 1 2 3 A B C D(0,0,0) (0,6,0) (1,2,3) (4,5) y' x'  
  • 31. 11 44 45 46 4 55 56 5 66 6 x x x x x x x1 0 0 x x x x x x2 0 0 x x x x x3 0 0 K' ; F' a a a d4 1 1 đx a a d5 2 2 a d6 3 3                                   0 0 0 1 2 3 TT CB 1 2 3 4 5       11 12 13 14 15 1 22 23 24 25 2 33 34 35 322 44 45 4 55 5 b b b b b e1 1 1 b b b b e2 2 2 K' b b b ; F' e3 3 3 đx b b e4 4 4 b e5 5 5                                  1 2 3 0 0 TT CB 1 2 3 4 5       11 12 14 1 22 25 2 33 44 4 1 c c x c x 4 f 4 2 c x c x 5 f 5 K' ; F'3 x x x 0 x 0 4 đx c x 6 f 6 5 x 0 x 0                                  4 5 0 6 0 TT Căn cứ vào bảng số mã, thu được ma trận độ cứng và vectơ tải trọng nút tổng thể (có xét tới điều kiện biên) như sau:
  • 32.                                    44 11 45 12 46 13 14 15 55 22 56 23 24 25 66 33 34 35 44 11 45 12 14 55 22 25 44 T 4 1 5 2 6 3 4 1 5 2 44 a b a b a b b b 0 1 a b a b b b 0 2 a b b b 0 3 K* b c b c c 4 đx b c c 5 c A 6 1 2 3 4 5 6 F* d e d e d e e f e f c A a                                Giải hệ phương trình    * * * K F     thoả mãn điều kiện biên vì phương trình thứ 6 thu được: K611 + K622 + K633 + K644 + K655 + (c44+ A)6 = (c44+ A)a Chia cả 2 vế cho (c44+ A), thu được: 6 = a Cách 2: Theo cách thứ 2 này thì khi đánh mã chuyển vị tổng thể cho kết cấu thì những thành phần nào chuyển vị bằng không hoặc có chuyển vị cưỡng bức ta đánh mã 0, còn các thành phần chuyển vị còn lại ta đánh mã theo thứ tự từ 1 đến hết. Sau đó ta lập ma trận độ cứng và véctơ tải trọng tác dụng nút cho toàn bộ hệ như bài toán không có chuyển vị cưỡng bức. Lúc này ta coi chuyển vị cưỡng bức như là một dạng tải tải trọng tác dụng lên kết cấu, vì vậy khi tính véctơ tải trọng tác dụng nút lên toàn bộ hệ phải kể thêm phần tải trọng tác dụng nút do chuyển vị cưỡng bức gây ra. Vectơ tải trọng nút lúc này là do chuyển vị cưỡng bức các liên kết tựa, được tổng hợp từ các vectơ tải trọng nút {P’}e của mỗi phần tử có liên kết tựa chuyển vị cưỡng bức:      T e ee P T P    ; trong đó:  e P nhận được bằng phản lực liên kết nút do chuyển vị cưỡng bức gối tựa với dấu ngược lại.
  • 33. phương trình cân bằng Với bài toán tuyến tính, việc giải hệ phương trình đại số là không khó. Kết quả tìm được là chuyển vị của các nút:     1* * * K F       (2.29) 2.1.1.7. Xác định nội lực Từ kết quả thu được, kết hợp với các điều kiện biên xác định được vectơ chuyển vị nút của từng phần tử trong hệ tọa độ địa phương. Từ đó xác định được nội lực trong phần tử. Phương pháp phần tử có ưu điểm là việc chia kết cấu ra thành các phần tử nhỏ thì dễ dàng mô tả được hình dạng phức tạp của công trình, đặc biệt vì các phần tử nhỏ nên mô tả trạng thái chuyển vị của phần tử chỉ cần các đa thức bậc thấp. Thông thường đối với phần tử dầm chịu uốn thì ta thường dùng đa thức bậc 3 để mô tả chuyển vị của phần tử: 2 3 0 1 2 3 y a a x a x a x    (2.30) Trong phương trình mô tả chuyển vị ta thấy có bốn thông số cần xác định. Để thuận tiện ta thay bốn thông số 0 1 2 3 a ,a ,a ,a bằng các chuyển vị và góc xoay tại các nút của phần tử 1 1 2 2 v , ,v ,  .Vì hàm chuyển vị bậc 3 nên ta các lực tác dụng trên phần tử ta phải quy về nút của phần tử. 2.1.2. Cách xây dựng ma trận độ cứng của phần tử chịu uốn Xét phần tử dầm có hai nút, mỗi nút có hai bậc tự do là chuyển vị và góc xoay và dầm có diện tích mặt cắt ngang là A; mô men quán tính của mặt cắt ngang là I; mô đun đàn hồi của vật liệu E (hình 2.6) Hình 2.6 Phần tử hai nút -1 1 1,v 11,v 1 2,vv 2 0
  • 34. được tổng quát, chiều dài phần tử lấy bằng hai đơn vị, gốc tọa độ nằm ở giữa phần tử. Như vậy, nếu biết được các bậc tự do tại các nút phần tử là 1 1 2 2 v , ,v ,  thì chuyển vị tại điểm bất kỳ trong phần tử tại tọa độ x được xác định như sau: 1 1 2 1 3 2 4 2 v N .v N . N .v N .      (2.31) Trong đó : 1 N , 2 N , 3 N , 4 N : là các hàm dạng và được xác định như sau:  3 1 1 N 2 3x x 4    ;  2 3 2 1 N 1 x x x 4     ;  3 3 1 N 2 3x x 4    ;  2 3 4 1 N 1 x x x 4      . Theo công thức trên ta thấy: 1x=-1 v v ; 1 x=-1 dv dx   ; 2x=1 v v ; 2 x=1 dv dx   . (2.32) Như vậy, mỗi phần tử có 4 bậc tự do  1 1 2 2 X v , ,v ,   cần xác định. Nếu biết được X thì ta có biết được chuyển vị trong phần tử cũng như biến dạng uốn và mô men theo công thức sau:   2 2 2 2 2 T1 2 3 4 1 1 2 22 2 2 2 2 d v d N d N d N d N v v dx dx dx dx dx             ; (2.33a)   2 2 2 2 T1 2 3 4 1 1 2 22 2 2 2 d N d N d N d N M EI. EI v v dx dx dx dx            (2.34a) Công thức trên là tính toán cho phần tử có chiều dài bằng 2, nếu phần tử có chiều dài là x thì biến dạng uốn và mô men được tính như sau:   2 22 2 2 2 2 T1 2 3 4 1 1 2 22 2 2 2 2 d v 2 2 d N d N d N d N v v dx x x dx dx dx dx                        (2.33b)   2 2 2 2 2 T1 2 3 4 1 1 2 22 2 2 2 2 d N d N d N d N M EI. EI. v v x dx dx dx dx                (2.34b)
  • 35. có các tải trọng tập trung   T 1 2 1 2 F P,P ,M ,M tác dụng tại các nút của phần tử. Theo phương pháp nguyên lý cực trị Gauss, lượng ràng buộc đối với bài toán tĩnh viết cho phần tử như sau:   1 4 i i i 11 x Z M dx FX min 2       (2.35) Điều kiện dừng của (3.25) được viết lại như sau:   1 4 i i i 11 x Z M dx F X 0 2          (2.36) hay: 2 2 2 2 2 2 2 21 1 1 1 1 1 2 1 3 1 4 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 21 1 1 1 1 2 2 2 3 2 4 2 3 2 2 2 2 2 2 2 2 1 1 1 1 2 2 21 1 3 2 2 2 1 d N d N d N d N d N d N d N d N dx dx dx dx dx dx dx dx dx dx dx dx d N d N d N d N d N d N d N d N dx dx dx dx 2 dx dx dx dx dx dx dx dx .EJ. x d N d N d N dx dx dx dx                         1 1 1 1 2 2 2 2 21 1 1 2 23 3 3 4 3 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 21 1 1 1 1 4 2 4 3 4 4 4 2 2 2 2 2 2 2 2 1 1 1 1 w P M w Pd N d N d N d N d N dx dx dx dx dx dx dx dx M d N d N d N d N d N d N d N d N dx dx dx dx dx dx dx dx dx dx dx dx                                                          (2.37)     K X F (2.38) trong đó: K : ma trận độ cứng của phần tử; F : véc tơ tải trọng tác dụng nút;  X : véc tơ chuyển vị nút của phần tử. Tính tích phân các hệ số trong  K ta có thể tính bằng phương pháp chính xác (bằng hàm int(fx,a,b) có sẵn trong matlab) hoặc tính bằng phương pháp tích phân số của Gauss và kết quả độ cứng của phần tử chịu uốn ngang phẳng như sau:
  • 36. 3 2 2 2 3 2 3 2 2 2 12EI 6EI 12EI 6EI x x x x 6EI 4EI 6EI 2EI x x x xK 12EI 6EI 12EI 6EI x x x x 6EI 2EI 6EI 4EI x x x x                                      (2.39) Biết được ma trận độ cứng phần tử thì ta dễ dàng xây dựng được ma trận độ cứng của toàn thanh.Nếu thanh chỉ có một phần tử thì ma trận của phần tử cũng chính là ma trận độ cứng của thanh. Trong phần tử nếu bậc tự do nào không có thì trong ma trận độ cứng của phần tử đó ta bỏ đi hàng và cột tương ứng với bậc tự do đó. 2.1.3. Cách xây dựng ma trận độ cứng tổng thể của kết cấu Để trình bày cách xây dựng ma trận độ cứng tổng thể của kết cấu trong phương pháp phần tử hữu hạn, luận văn xin được trình bày thông qua ví dụ giải bài toán dầm chịu uốn dưới tác dụng của tải trọng tĩnh củ thể sau (còn các bài toán khác thì cách xây dựng ma trận độ cứng tổng thể cũng làm tương tự): Ví dụ 2.5: Tính toán kết cấu dầm chịu lực như (hình 2.7). Biết dầm có độ cứng 8 2 EI 10 (kN.cm ) không đổi và P=10 (kN). Xác định chuyển vị tại giữa dầm. Hình 2.7 Hình ví dụ 2.5 P
  • 37. rạc hóa thanh thành các phần tử Chia thanh ra thành pt n phần tử.Các nút của phần tử phải trùng với vị trí đặt lực tập trung, chiều dài các phần tử có thể khác nhau. Mỗi phần tử có 4bậc tự do, như vậy nếu pt n phần tử rời rạc thì tổng cộng có 4 pt n bậc tự do. Nhưng vì cần đảm bảo liên tục giữa các chuyển vị là chuyển vị của nút cuối phần tử thứ e bằng chuyển vị của nút đầu phần tử thứ  e 1 nên số bậc tự do của thanh sẽ nhỏ hơn 4 pt n . Khi giải ta chỉ cần đảm bảo điều kiện liên tục của chuyển vị còn điều kiện liên tục về góc xoay được xét bằng cách cách đưa vào các điều kiện ràng buộc. Ví dụ dầm trong (ví dụ 2.5) ta chia thành 4 phần tử (hình 2.8) Như vây, tổng cộng số ẩn là 11 ẩn < 4x4=16 ẩn. Gọi ma trận w n là ma trận chuyển vị có kích thước  w pt n n ,2 là ma trận có pt n hàng và 2 cột chứa các ẩn số là chuyển vị tại nút của các phần tử (hình 2.8)  w n (1,:) 0 1 ;  w n (2,:) 1 2 ;  w n (3,:) 2 3 ;  w n (4,:) 3 0 1 2 3 4 5 Sè hiÖu nót trong thanh 0 1 2 3 1 2 3 0 Sè hiÖu bËc tù do chuyÓn vÞnót Sè hiÖu bËc tù do gãc xoay nót 4 5 8 9 6 7 10 11
  • 38. 3 n 1 2 3 0        Gọi ma trận n là ma trận chuyển vị có kích thước  pt n n ,2 là ma trận có pt n hàng và 2 cột chứa các ẩn số là góc xoay tại nút của các phần tử (hình 2.8)  n (1,:) 4 5  ;  n (2,:) 6 7  ;  n (3,:) 8 9  ;  n (4,:) 10 11  T w 4 6 8 10 n 5 7 9 11        Sau khi biết ẩn số thực của các thanh ta có thể xây dựng độ cứng tổng thể của thanh (có rất nhiều cách ghép nối phần tử khác nhau, tùy vào trình độ lập trình của mỗi người nên tác giả không trình bày chi tiết cách ghép nối các phần tử lại để được ma trận độ cứng của toàn thanh và có thể xem trong code mô đun chương trình của tác giả) Nếu bài toán có cv n ẩn số chuyển vị và gx n ẩn số góc xoay thì ma trận độ cứng của thanh là K có kích thước (nxn),  K n,n với  cv gx n n n  . Như ở ví dụ 2.5,n 11 . Bây giờ xét điều kiện liên tục về góc xoay giữa các phần tử. Điều kiện liên tục về góc xoay giữa các phần tử được viết như sau: i i 1 nut2 nut1 dy dy 0 dx dx               (2.40) hay: 1 2 1 nut2 nut1 dy dy 0 dx dx                  (2.41a) 2 3 2 nut2 nut1 dy dy 0 dx dx                  (2.41b)
  • 39. dy 0 dx dx                  (2.41c) Trong đó i  cũng là ẩn số của bài toán (có k ẩn số), do đó tổng số ẩn số của bài toán lúc là (n+k) do đó ma trận độ cứng của phần tử lúc này cũng phải thêm k dòng và k cột như vậy kích thước của ma trận độ cứng là  K n k,n k  . Gọi 1 k là góc xoay tại nút 2 của phần tử trước, 2 k là góc xoay tại nút 1 của phần tử sau thì ta có các hệ số trong ma trận độ cứng K:  1 2 k n i,k x    ;  2 2 k n i,k x     (i 1 k)  (2.42a)  1 2 k k ,n i x    ;  2 2 k k ,n i x     (i 1 k)  (2.42b) Nếu có hai phần tử thì có một điều kiện về góc xoay, có pt n phần tử thì có  pt 2n 1 điều kiện liên tục về góc xoay giữa các phần tử. Như vậy cuối cùng ta sẽ thiết lập được phương trình:     K X F trong đó:  1 n F so hang n F F 0 so hang k 0                      ;   1 n 1 k x x X                    là ẩn số của bài toán Trong ví dụ 2.5 khi chia thanh ra thành 4 phần tử. Kết quả ma trận độ cứng của thanh:
  • 40. 0 1.2 1.2 1.2 1.2 0 0 0 0 0 0 0 1.2 2.4 1.2 0 0 1.2 1.2 1.2 1.2 0 0 0 0 0 0 1.2 2.4 0 0 0 0 1.2 1.2 1.2 1.2 0 0 0 1.2 0 0 1.6 0.8 0 0 0 0 0 0 0 0 0 1.2 0 0 0.8 1.6 0 0 0 0 0 0 2.10 0 0 1.2 1.2 0 0 0 1.6 0.8 0 0 0 0 2.10 0 0 1.2 1.2 0 0 0 0.8 1.6 0 0 0 0 0 2.10 0 K 10 0                    5 5 5 5 5 5 5 5 5 1.2 1.2 0 0 0 0 1.6 0.8 0 0 0 2.10 0 0 1.2 1.2 0 0 0 0 0.8 1.6 0 0 0 0 2.10 0 0 1.2 0 0 0 0 0 0 1.6 0.8 0 0 2.10 0 0 1.2 0 0 0 0 0 0 0.8 1.6 0 0 0 0 0 0 0 2.10 2.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.10 2.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.10 2.10 0 0 0 0                                                        Kết quả chuyển vị, góc xoay tại các nút: 2 3 4 1 2 3 4 5 w ;w ;w ; 0.09166667(cm);0.13333333(cm);0.09166667(cm); ; ; ; ; 0.05(rad);0.0375(rad);0; 0.0375(rad); 0.05(rad)                 Ta thấy kết quả trên so với kết quả giải chính xác theo phương pháp giải tích rất đúng ví dụ như chuyển vị tại nút 3 tính theo phương pháp giải tích: 3 3 Pl w 0,13333333(cm) 48EI  
  • 41. DẦM CÓ XÉT ĐẾN BIẾN DẠNG TRƯỢT NGANG Trong chương này trước tiên trình bàylý thuyết dầm thông thường, lý thuyết dầm Euler - Bernoulli, sau đó giới thiệu lý thuyết dầm có xét biến dạng trượt ngang và phương pháp nghiên cứu nội lực và chuyển vị của hệ dầm chịu uốn có xét biến dạng trượt ngang. 3.1. Lý thuyết dầm Euler – Bernoulli Dầm chịu uốn là cấu kiện có kích thước tiết diện nhỏ hơn nhiều lần so với chiều dài của nó, trên mặt cắt ngang dầm tồn tại hai thành phần nội lực là mômen uốn M và lực cắt Q. Tải trọng tác dụng lên dầm nằm trong mặt phẳng có chứa đường trung bình của dầm và thẳng góc với trục dầm. Dưới đây ta xét hai trường hợp dầm chịu uốn thuần túy phẳng và uốn ngang phẳng. 3.1.1. Dầm chịu uốn thuần túy phẳng Dầm chịu uốn thuần túy phẳng là dầm mà trên mọi mặt cắt ngang dầm chỉ có một thành phần nội lực là mômen uốn nằm trong mặt phẳng quán tính chính trung tâm. Ứng suất trên mặt cắt ngang Giả sử dầm có mặt cắt ngang hình chữ nhật (bxh) chịu uốn thuần túy như, hình 3.1a. Ta tiến hành thí nghiệm sau:
  • 42. chịu lực ta vạch lên mặt ngoài dầm những đường thẳng song song và vuông góc với trục dầm tạo nên những ô vuông, hình 3.1a. Sau khi dầm biến dạng, hình 3.1c, ta thấy rằng những đường song song với trục dầm trở thành những đường cong, những đường thẳng vuông góc với trục dầm vẫn thẳng và vuông góc với trục dầm. Từ đó người ta đưa ra hai giả thiết sau đây: Hình 3.1. Dầm chịu uốn thuồn túy - Mặt cắt ngang dầm ban đầu phẳng và vuông góc với trục dầm, sau biến dạng vẫn phẳng và vuông góc với trục dầm (giả thiết về mặt cắt ngang, giả thiết Bernoulli). - Trong quá trình biến dạng các thớ dọc của dầm không ép lên nhau và không đẩy xa nhau (giả thiết về các thớ dọc). Ngoài ra khi tính toán dầm ta còn dựa vào các giả thiết sau: - Vật liệu có tính chất liên tục, đồng nhất và đẳng hướng - Biến dạng của vật thể là biến dạng đàn hồi và đàn hồi tuyệt đối. - Biến dạng của vật thể do ngoại lực gây ra là nhỏ so với kích thước của chúng. - Tuân theo nguyên lý độc lập tác dụng Từ hình 2.1c, ta nhận thấy rằng: khi dầm bị uốn thì các thớ trên co lại, các thớ dưới giãn ra. Do vậy khi chuyển từ thớ co sang thớ giãn sẽ có thớ không co, không giãn. Thớ này gọi là thớ trung hòa. Tập hợp các thớ trung hòa gọi là lớp trung hòa, giao của lớp trung hòa với mặt cắt ngang gọi là đường trung hòa.
  • 43. một mặt cắt ngang nào đó của dầm thì sau khi bị uốn nó sẽ cho hình dạng như hình 3.2. Đường trung hòa của mặt cắt ngang là một đường cong. Vì chuyển vị của các điểm trên mặt cắt ngang của dầm là bé, nên ta coi rằng hình dáng mặt cắt ngang dầm không thay đổi sau khi biến dạng. Hình 3.2. Mặt cắt ngang dầm Khi đó đường trung hòa của mặt cắt ngang là đường thẳng và giả sử lấy trục ox trùng với đường trung hòa. Xét biến dạng của đoạn dầm dz được cắt ra khỏi dầm bằng hai mặt cắt 1- 1 và 2-2. Sau biến dạng hai mặt cắt này làm với nhau một góc 𝑑𝜑 và thớ trung hòa có bán kính cong là 𝜌 (hình 3.3). Theo tính chất của thớ trung hòa ta có: Hình 3.3. Hai mặt cắt sau khi uốn 𝑑𝑧 = 𝜌𝑑𝜑 (3.1) Ta xét biến dạng của thớ ab cách thớ trung hòa một khoảng là y, ta có: 𝑎𝑏𝑡 ̅̅̅̅̅ = 𝑑𝑧 = 𝜌𝑑𝜑; 𝑎𝑏𝑠 ̅̅̅̅̅ = 𝑑𝑧 = (𝜌 + 𝑦)𝑑𝜑 (3.2) Từ (3.2) ta suy ra: 𝜀 𝑧 = 𝑎𝑏 𝑠̅̅̅̅̅−𝑎𝑏 𝑡̅̅̅̅̅ 𝑎𝑏 𝑡̅̅̅̅̅ = (𝜌+𝑦)𝑑𝜑−𝜌𝑑𝜑 𝜌𝑑𝜑 ; (3.3) Xét ứng suất tại điểm bất kỳ A(x,y) trên mặt cắt ngang nào đó của dầm (hình 3.4a). Trong đó trục oy là trục đối xứng của mặt cắt ngang, trục ox trùng với đường trung hòa của mặt cắt ngang.
  • 44. tại A một phân tố hình hộp bằng các mặt cắt song song với các mặt tọa độ (hình 3.4b). Khi đó theo giả thiết thứ nhất thì góc của phân tố sau biến dạng không đổi, nên ta suy ra trên các mặt của phân tố không có ứng suất tiếp. Mặt khác theo giả thiết thứ hai thì trên các mặt của phân tố song song với trục Z không có ứng suất pháp, nghĩa là 𝜎𝑥 = 𝜎𝑥 = 0. Do vậy trên các mặt của phân tố chỉ có ứng suất pháp 𝜎𝑧 và theo định luật Hooke ta có: Hình 2.4. Phân tố A 𝜎𝑧 = 𝐸𝜀 𝑧 = 𝐸 𝑦 𝜌 ; (3.4) Dầm chịu uốn thuần túy nên ta có 𝑁𝑧 = ∫ 𝜎𝑧 𝑑𝐹 = 0𝐹 (3.5) 𝑀 𝑥 = ∫ 𝜎𝑧 𝑦𝑑𝐹 = 0𝐹 (3.6) Thay (3.4) vào (3.5) ta được 𝑁𝑧 = ∫ 𝐸 𝑦 𝜌 𝑑𝐹 = 𝐸 𝜌 ∫ 𝑦𝑑𝐹 = 0𝐹 = 𝐸 𝜌 𝑆 𝑥 = 0𝐹 (3.7) 𝑆 𝑥 = 0 nghĩa là ox là trục quán tính chính trung tâm. Vì y là trục đối xứng nên suy ra oxy là trục quán tính chính trung tâm của mặt cắt ngang. Thay (3.4) vào (3.6) ta được: 𝑀 𝑥 = ∫ 𝜎𝑧 𝑦𝑑𝐹 = 𝐸 𝜌 ∫ 𝐸 𝑦2 𝜌 𝑑𝐹 = 𝐸 𝜌𝐹 𝐽 𝑥𝐹 (3.8) Suy ra: 1 𝜌 = 𝑀 𝑥 𝐸𝐽 𝑥 (3.9) 𝐸𝐽 𝑥 là độ cứng của dầm khi uốn. Thay (3.9) vào (3.4) ta có: 𝜎𝑧 = 𝑀 𝑥 𝐸𝐽 𝑥 𝑦 (3.10)
  • 45. (3.10) ta có các nhận xét: - Luật phân bố của 𝜎𝑧 trên mặt cắt ngang dầm là bậc nhất đối với y. - Những điểm trên mặtc ắt ngang có cùng tung độ y (nghĩa là những điểm nằm trên đường thẳng song song với trục trung hòa x) sẽ có trị số bằng nhau và nó tỉ lệ với khoảng cách từ các điểm đó tới trục trung hòa. - Những điểm nằm trên trục trung hòa y=0 có trị số 𝜎𝑧 = 0. Những điểm xa trục trung hòa nhất sẽ có trị số ứng suất lớn nhất và bé nhất. 2.1.1. Dầm chịu uốn ngang phẳng Dầm chịu uốn ngang phẳng là dầm mà các mặt cắt ngang của nó có các thành phần nội lực là lực cắt Qy và mômen uốn Mx nằm trong mặt phẳng quán tính chính trung tâm của dầm. Ứng suất trên mặt cắt ngang Xét dầm chịu uốn ngang phẳng như trên hình 3.5a. Ta quan sát thí nghiệm sau: Trước khi dầm chịu lực ta vạch lên mặt ngoài dầm những đường thẳng song song và vuông góc với trục dầm tạo. Sau khi dầm biến dạng ta thấy rằng những đường thẳng song song với trục dầm trở thành những đường cong nhưng vẫn còn song song với trục dầm, những đường thẳng vuông góc với trục dầm không còn thẳng và vuông góc với trục dầm nữa hình 3.5c. Hình 3.5. Dầm chịu uốn ngang phẳng
  • 46. tỏ mặt cắt ngang dầm sau biến dạng bị vênh đi. Nếu tại điểm A bất kỳ của dầm ta tách ra một phân tố bằng các mặt song song với các mặt tọa độ thì sau khi biến dạng các góc vuông của phân tố không còn vuông nữa, nghĩa là phân tố có biến dạng góc. Suy ra trên các mặt phân tố sẽ có ứng suất tiếp. Trong lý thuyết đàn hồi người ta đã chứng minh được rằng trên các mặt của phân tố có các ứng suất sau: 𝜎 𝑦, 𝜎𝑧, 𝜏 𝑧𝑦, 𝜏 𝑦𝑧,. Nhưng thực tế cho thấy rằng ứng suất pháp 𝜎 𝑦, rất bé so với các thành phần khác nên ta bỏ qua, nghĩa là khi dầm chịu uốn ngang phẳng thì trên mặt cắt ngang dầm có hai thành phần ứng suất là: ứng suất pháp 𝜎𝑧, và ứng suất tiếp hình 3.6. Hình 3.6. Phân tố dầm chịu uốn ngang phẳng a. Ứng suất pháp 𝝈 𝒛: Trong mục trước nhờ giả thiết Bernoulli về mặt cắt ngang phẳng ta đã đưa tới công thức tính ứng suất pháp 𝜎𝑧 trên mặt cắt ngang dầm là: 𝜎𝑧 = 𝑀 𝑥 𝐸𝐽 𝑥 𝑦 (3.11) Trong trường hợp dầm bị uốn ngang phẳng thì sau biến dạng mặt cắt ngang dầm bị vênh đi, nghĩa là không còn phẳng nữa. Như vậy mọi lập luận để đưa tới công thức (3.11) để tính ứng suất pháp 𝜎𝑧 không phù hợp nữa. Tuy nhiên trong lý thuyết đàn hồi người ta đã chứng minh được rằng đối với dầm chịu uốn ngang phẳng ta vẫn có thể dùng công thức (3.11) để tính ứng suất 𝜎𝑧 mà sai số không lớn lắm.
  • 47. tiếp trên mặt cắt ngang dầm chịu uốn ngang phẳng (công thức Durapski): Giả sử có dầm mặt cắt ngang là hình chữ nhật hẹp (b
  • 48. 𝜏 𝑧𝑦. Để tính 𝜏 𝑧𝑦 ta cắt một đoạn dầm dz bằng hai mặt cắt 1-1 và 2- 2, hình 2.8. Sau đó cắt đoạn dầm dz bằng một mặt phẳng qua điểm A song song với trục Z. Mặt phẳng này chia đoạn dầm dz ra làm hai phần. Nếu gọi BC = bc và dt (BCEF)=Fc thì từ điều kiện cân bằng của phân dưới của đoạn dz hình…ta suy ra: Hình 3.8. ∑ 𝑍 = ∫ 𝜎𝑧 (1) 𝑑𝐹 − ∫ 𝜎𝑧 (2) 𝑑𝐹 + 𝐹𝑐𝐹𝑐 𝜏 𝑦𝑧 𝑏𝑐𝑑𝑍 = 0 Mặt khác ta lại có 𝜎𝑧 (1) = 𝑀 𝑥 𝐽 𝑥 𝑦 (a) 𝜎𝑧 (2) = 𝑀 𝑥+𝑑𝑀 𝑥 𝐽 𝑥 𝑦 (b) Thay (b) vào (a) ta được: 𝜏 𝑦𝑧 = 𝜏 𝑧𝑦 = 1 𝑏𝑐. 𝑑𝑧 [∫ 𝑀 𝑥 + 𝑑𝑀 𝑥 𝐽 𝑥𝐹𝑐 𝑦𝑑𝐹 − ∫ 𝑀 𝑥 𝐽 𝑥𝐹𝑐 𝑦𝑑𝐹] = = 1 𝐽 𝑥.𝑏𝑐 𝑑𝑀 𝑥 𝑑𝑧 ∫ 𝑦𝑑𝐹𝐹𝑐 (c) Ta có: 𝑑𝑀 𝑥 𝑑𝑧 = 𝑄 𝑦; ∫ 𝑦𝑑𝐹𝐹𝑐 = 𝑆 𝑥 𝑐 (d) 𝑆 𝑥 𝑐 : gọi là mômen tĩnh của phần diện tích Fc đối với trục x. Thay (d) vào (c) ta suy ra: 𝜏 𝑦𝑧 = 𝜏 𝑧𝑦 = 𝑄 𝑦 𝑆 𝑥 𝑐 𝐽 𝑥.𝑏𝑐 (3.12)
  • 49. gọi là bề rộng của mặt cắt ngang qua điểm cần tính ứng suất A. Công thức (3.12) gọi là công thức Durapski. Từ công thức này và theo điều kiện cân bằng của phần thanh ở trên ta suy ra là 𝜏 𝑦𝑧 cùng chiều với trục z, 𝜏 𝑧𝑦 cùng chiều với 𝑄 𝑦. Nghĩa là dấu của 𝜏 𝑧𝑦 và 𝑄 𝑦 như nhau. Do vậy ở đây chỉ cần tính trị số của 𝜏 𝑧𝑦 theo (3.12) còn dấu của nó được xác định từ biểu đồ lực cắt 𝑄 𝑦. c. Luật phân bố ứng suất tiếp 𝜏 𝑧𝑦 đối với mặt cắt hình chữ nhật: Giả sử mặt cắt ngang dầm chịu uốn ngang phẳng là hình chữ nhật bề rộng b, chiều cao h. Ta đi tìm luật phân bố của ứng suất tiếp 𝜏 𝑧𝑦 đối với mặt cắt nếu lực cắt tại mặt cắt này là 𝑄 𝑦. Ta xét điểm bất kỳ A(x,y) trên mặt cắt, ta có bc=BC=b. Hình 3.9. 𝑆 𝑥 𝑐 = ( ℎ 2 − 𝑦) . 𝑏 [𝑦 + 1 2 ( ℎ 2 − 𝑦)] = 𝑏 2 ( ℎ2 4 − 𝑦2 ) Suy ra: 𝜏 𝑦𝑧 = 𝜏 𝑧𝑦 = 𝑄 𝑦 𝑆 𝑥 𝑐 𝐽 𝑥.𝑏𝑐 = 𝑄 𝑦 𝑏 2 ( ℎ2 4 −𝑦2) 𝐽 𝑥.𝑏 = 𝑄 𝑦 2𝐽 𝑥 ( ℎ2 4 − 𝑦2 ) (3.13) Từ (2.13) ta nhận thấy rằng: Luật phân bố 𝜏 𝑧𝑦 trên mặt cắt là parabol bậc hai đối với y. Với y=0 (những điểm nằm trên trục trung hòa ox) thì: 𝜏 𝑧𝑦 (0) = 𝜏 𝑚𝑎𝑥 = 𝑄 𝑦ℎ2 8.𝐽 𝑥 = 3𝑄 𝑦 2𝐹 (3.14) 𝑦 = ± ℎ 2 𝑡ℎì 𝜏 𝑧𝑦 = 0 Từ đó ta có thể vẽ được biểu đồ 𝜏 𝑧𝑦 cho mặt cắt như, hình 3.9b.
  • 50.
  • 51. bố ứng suất tiếp 𝜏 𝑧𝑦 đối với mặt cắt hình chữ I: Xét dầm chịu uốn ngang phẳng có mặt cắt ngang hình chữ I hình 3.10. Để đơn giản ta có thể coi mặt cắt bao gồm ba hình chữ nhật ghép lại: Hình chữ nhật long rộng d, cao (h-2t) và hai hình chữ nhật đế rộng b cao t, hình 3.10b. Hình 3.10. Thực tế cho thấy ứng suất tiếp do 𝑄 𝑦 gây ra ở phần đế rất bé so với phần lòng. Do vậy ở đây ta chỉ xét sự phân bố ứng suất tiếp 𝜏 𝑦𝑧 ở phần long mặt cắt chữ I mà thôi. Ta xét điểm bất kỳ A(x,y) thuộc long ta có: bc=d.𝑆 𝑥 𝑐 = 𝑆 𝑥 − 1 2 𝑑𝑦2 Suy ra: 𝜏 𝑧𝑦 = 𝑄 𝑦 𝑆 𝑥 𝑐 𝐽 𝑥.𝑏𝑐 = 𝑄 𝑦(𝑆 𝑥− 1 2 𝑑𝑦2) 𝐽 𝑥.𝑑 (3.15) Từ (3.15) ta nhận thấy rằng: Luật phân bố 𝜏 𝑧𝑦 của phần lòng mặt cắt chữ I là parabol bậc hai đối với y. Với y=0 (những điểm nằm trên trục trung hòa ox) thì: 𝜏 𝑧𝑦 (0) = 𝜏 𝑚𝑎𝑥 = 𝑄 𝑦 𝑆 𝑥 𝐽 𝑥.𝑏𝑐 (3.16) Đối với điểm C tiếp giáp giữa long và đế của chữ I, nhưng thuộc phần long thì ta có: 𝑦𝑐 = ℎ 2 − 𝑡 Từ đó ta có: 𝜏 𝑐 = 𝜏1 = 𝜏 𝑧𝑦 ( ℎ 2 − 𝑡) = 𝑄 𝑦[𝑆 𝑥− 1 2 𝑑( ℎ 2 −𝑡) 2 ] 𝐽 𝑥.𝑑 (3.17) Biểu đồ 𝜏 𝑧𝑦 1 của phần long mặt cắt chữ I được vẽ trên, hình 3.10c.
  • 52. bố ứng suất tiếp 𝜏 𝑧𝑦 đối với mặt cắt hình tròn: Xét dầm chịu uốn ngang phẳng có mặt cắt ngang hình tròn bán kính R, và lực cắt trên mặt cắ này là 𝑄 𝑦, hình 3.11. Ta xét ứng suất tiếp trên đường BC song song với trục ox và cách ox một khoảng bằng y. Ta thấy rằng tại các điểm biên B,C ứng suất tiếp 𝜏 tiếp tuyến với chu vi hình tròn và do đối xứng thì ứng suất tiếp tại D có phương y. Hình 3.11. Ta thừa nhận rằng ứng suất tiếp tại các điểm khác nhau trên BC có phương qua điểm K đồng thời thành phần song song oy của chúng là bằng nhau, nghĩa là thành phần 𝜏 𝑧𝑦 phân bố đều trên BC, hình 3.11a. Ta đi tìm luật phân bố của 𝜏 𝑧𝑦. Ta có: bc=2R.cosα 𝑆 𝑥 𝑐 = ∫ 𝜌𝑑𝐹 = ∫ 𝜌𝑏𝑑𝐹 = ∫ 𝑅𝑠𝑖𝑛𝜑. 2𝑅𝑐𝑜𝑠𝜑. 𝑑(𝑅𝑠𝑖𝑛𝜑) 𝜋/2 𝛼 𝑅 𝑦𝐹𝑐 = 2𝑅3 ∫ 𝑐𝑜𝑠2 𝜑. 𝑠𝑖𝑛𝜑𝑑(𝜑) = −2𝑅3 ∫ 𝑐𝑜𝑠2 𝜑𝑑(𝑐𝑜𝑠𝜑) = 2 3 𝜋/2 𝛼 𝜋/2 𝛼 𝑅3 𝑐𝑜𝑠3 𝛼 Suy ra: 𝜏 𝑧𝑦 = 𝑄 𝑦 2 3 𝑅3 𝑐𝑜𝑠3 𝛼 𝐽 𝑥.2𝑅𝑐𝑜𝑠𝛼 = 𝑄 𝑦 𝑅2 𝑐𝑜𝑠3 𝛼 3𝐽 𝑥 = 𝑄 𝑦 𝑅2(1−𝑠𝑖𝑛2 𝛼) 3𝐽 𝑥 𝜏 𝑧𝑦 = 𝑄 𝑦(𝑅2−𝑦2) 3𝐽 𝑥 (3.18) Biểu đồ 𝜏 𝑧𝑦 được vẽ trên hình 3.11b, trong đó:
  • 53. = 𝜏 𝑚𝑎𝑥 = 𝑄 𝑦 𝑅2 3𝐽 𝑥 = 4𝑄 𝑦 3𝜋𝑅2 = 4𝑄 𝑦 3𝐹 (3.19) Biểu đồ 𝜏 𝑧𝑦 của mặt cắt hình tròn được vẽ trên, hình 3.11b. 3.2. Lý thuyết dầm có xét biến dạng trượt ngang Lý thuyết xét biến dạng trượt trong dầm do Timoshenko đưa ra và thường được gọi là lý thuyết dầm Timoshenko. Khi xây dựng lý thuyết này vẫn sử dụng giả thiết tiết diện phẳng của lý thuyết dầm thông thường, tuy nhiên do có biến dạng trượt, trục dầm sẽ xoay đi một góc và không còn thẳng góc với tiết diện dầm nữa. Lý thuyết xét biến dạng trượt được dùng phổ biến trong phương pháp phần tử hữu hạn hiện nay là dùng hàm độ võng y và hàm góc xoay  do momen uốn gây ra là hai hàm chưa biết. Trong trường hợp này biến dạng trượt tại trục trung hòa được xác định như sau, ví dụ như [28, trg 5]. 𝛾 = 𝑑𝑦 𝑑𝑥 − 𝜃 (3.20) Từ đó ta có các công thức xác định M và Q 𝑀 = −𝐸𝐽 ( 𝑑𝜃 𝑑𝑥 ) 𝑄 = 𝐺𝐹 𝛼 [− 𝑑𝑦 𝑑𝑥 + 𝜃] (3.21) Trong các công thức trên EJ là độ cứng uốn,GF là độ cứng cắt của tiết diện, G là mođun trượt của vật liệu, F là diện tích tiết diện,  là hệ số xét sự phân bố không đều của ứng suất tiếp trên chiều cao tiết diện. Các tác giả [28, trg 5] cho rằng khi môđun trượt G→∞ thì từ (3.21) suy ra 𝜃 = 𝑑𝑦 𝑑𝑥 (3.22) nghĩa là trở về lý thuyết dầm không xét biến dạng trượt: Góc xoay của đường độ võng là do mômen gây ra. Theo tác giả, lập luận trên không đúng bởi vì khi thỏa mãn phương trình (3.22) thì từ phương trình (3.21) suy ra lực cắt Q =0,
  • 54. hợp uốn thuần túy của dầm. Vì lý do đó nên lý thuyết xét biến dạng trượt dùng y và 𝜃 làm ẩn không hội tụ về lý thuyết dầm thông thường và khi áp dụng vào bài toán tấm, nó cũng không hội tụ về lý thuyết tấm thông thường (lý thuyết tấm Kierchhoff, [28, trg 71],[25, trg 404]. Phương hướng chung để khắc phục thiếu sót vừa nêu là bổ sung thêm các nút xét lực cắt Q trong các phần tử dầm hoặc phần tử tấm [25,26, 28] hoặc dùng phần tử có hàm dạng là đa thức bậc thấp (bậc nhất) [ 31,trg 126]. Vấn đề tìm phần tử có hàm dạng không bị hiện tượng biến dạng trượt bị khóa,shear locking, vẫn đang được tiếp tục nghiên cứu,[32].Tình hình chung hiện nay về lý thuyết xét biến dạng trượt trong dầm và tấm là như trên. Khác với các tác giả khác, trong [19, 20] lý thuyết xét biến dạng trượt được xây dựng trên cơ sở hai hàm chưa biết là hàm độ võng y và hàm lực cắt Q. Trong trường hợp này biến dạng trượt xác định theo GF Q   (3.23)  là hệ số xét sự phân bố không đều của ứng suất cắt tại trục dầm. Góc xoay do momen uốn sinh ra bằng hiệu giữa góc xoay đường độ võng với góc xoay do lực cắt gây ra. GF Q dx dy dx dy    (3.24) Momen uốn sẽ bằng )( 2 2 dx dQ GFdx yd EJ dx d EJM   (3.25) Biến dạng uốn  dx dQ GFdx yd    2 2 (3.26)
  • 55. thuyết này ta sẽ xây dựng phương trình cân bằng và các điều kiện biên của dầm như sau. Theo phương pháp nguyên lý cực trị Gauss ta viết phiếm hàm lượng cưỡng bức (chuyển động) như sau: (giả sử dầm có lực phân bố đều q). MinqydxdxQdxMZ l l l    0 0 0  (3.27) Các hàm độ võng y , hàm biến dạng trượt  và hàm biến dạng uốn  là các đại lượng biến phân, nghĩa là điều kiện cần và đủ để hệ ở trạng thái cân bằng là 𝛿𝑍 = ∫ 𝑀𝛿𝜒𝑑𝑥 𝑙 0 + ∫ 𝑄𝛿𝛾𝑑𝑥 𝑙 0 − ∫ 𝑞𝛿𝑦𝑑𝑥 𝑙 0 = 0 Hay𝑍 = ∫ 𝑀𝛿 [− 𝑑2 𝑦 𝑑𝑥2 + 𝛼 𝐺𝐹 𝑑𝑄 𝑑𝑥 ] 𝑑𝑥 𝑙 0 + ∫ 𝑄𝛿 [ 𝛼𝑄 𝐺𝐹 ] 𝑑𝑥 𝑙 0 − ∫ 𝑞𝛿[𝑦]𝑑𝑥 𝑙 0 = 0 (3.28) Trong phương trình tích phân (2.28) hai đại lượng cần tìm là y(x) và Q(x) do đó có thể tách ra thành hai phương trình sau: ∫ 𝑀𝛿 [− 𝑑2 𝑦 𝑑𝑥2 ] 𝑑𝑥 𝑙 0 − ∫ 𝑞𝛿[𝑦]𝑑𝑥 𝑙 0 = 0 (3.29) ∫ 𝑀𝛿 [ 𝛼 𝐺𝐹 𝑑𝑄 𝑑𝑥 ] 𝑑𝑥 𝑙 0 + ∫ 𝑄𝛿 [ 𝛼𝑄 𝐺𝐹 ] 𝑑𝑥 𝑙 0 = 0 (3.30) Lấy tích phân từng phần phương trình (3.29) ∫ 𝑀𝛿 [− 𝑑2 𝑦 𝑑𝑥2 ] 𝑑𝑥 𝑙 0 = − ∫ 𝑀𝑑 (𝛿 [ 𝑑𝑦 𝑑𝑥 ]) 𝑑𝑥 𝑙 0 = −𝑀𝛿 [ 𝑑𝑦 𝑑𝑥 ]| 0 𝑙 + ∫ 𝑑𝑀 𝑑𝑥 𝛿 [ 𝑑𝑦 𝑑𝑥 ] 𝑑𝑥 𝑙 0 Tích phân từng phần thành phần cuối của biểu thức trên ta có
  • 56. 𝑑𝑥 𝑙 0 = −𝑀𝛿 [ 𝑑𝑦 𝑑𝑥 ]| 0 𝑙 + 𝑑𝑀 𝑑𝑥 𝛿[𝑦]| 0 𝑙 − ∫ 𝑑2 𝑀 𝑑𝑥2 𝛿[𝑦]𝑑𝑥 𝑙 0 Phương trình (2.29) sau khi lấy tích phân từng phần có dạng −𝑀𝛿 [ 𝑑𝑦 𝑑𝑥 ]| 0 𝑙 + 𝑑𝑀 𝑑𝑥 𝛿[𝑦]| 0 𝑙 − ∫ ( 𝑑2 𝑀 𝑑𝑥2 + 𝑞) 𝛿[𝑦]𝑑𝑥 = 0 (3.31) 𝑙 0 Bởi vì các đại lượng 𝛿[𝑦] và 𝛿 [ 𝑑𝑦 𝑑𝑥 ] là nhỏ và bất kỳ nên từ (3.31) ta có 𝑑2 𝑀 𝑑𝑥2 + 𝑞 = 0 (3.31𝑎) −𝑀𝛿 [ 𝑑𝑦 𝑑𝑥 ]| 0 𝑙 = 0 (3.31𝑏) 𝑑𝑀 𝑑𝑥 𝛿[𝑦]| 0 𝑙 = 0 (3.31𝑐) Tích phân từng phần phương trình (3.30): ∫ 𝑀𝛿 [ 𝛼 𝐺𝐹 𝑑𝑄 𝑑𝑥 ] 𝑑𝑥 𝑙 0 = ∫ 𝑀𝑑 (𝛿 [ 𝛼𝑄 𝐺𝐹 ]) 𝑑𝑥 𝑙 0 = 𝑀 (𝛿 [ 𝛼𝑄 𝐺𝐹 ])| 0 𝑙 − ∫ 𝑑𝑀 𝑑𝑥 𝛿 [ 𝛼𝑄 𝐺𝐹 ] 𝑑𝑥 𝑙 0 Sau khi lấy tích phân từng phần 𝑀 (𝛿 [ 𝛼𝑄 𝐺𝐹 ])| 0 𝑙 + ∫ (− 𝑑𝑀 𝑑𝑥 + 𝑄) 𝛿 [ 𝛼𝑄 𝐺𝐹 ] 𝑑𝑥 𝑙 0 = 0 (3.32) Bởi vì biến phân 𝛿 [ 𝛼𝑄 𝐺𝐹 ]là nhỏ và bất kỳ nên từ (2.13) ta có − 𝑑𝑀 𝑑𝑥 + 𝑄 = 0 (3.32𝑎) 𝑀𝛿 [ 𝛼𝑄 𝐺𝐹 ]| 0 𝑙 = 0 (3.32𝑏)
  • 57. thức (3.6), hai phương trình vi phân cân bằng của dầm (3.31a) và (3.32a) có dạng. 𝐸𝐽 [ 𝑑4 𝑦 𝑑𝑥4 − 𝛼 𝐺𝐹 𝑑3 𝑄 𝑑𝑥3 ] = 𝑞 (3.33𝑎) 𝐸𝐽 [ 𝑑3 𝑦 𝑑𝑥3 − 𝛼 𝐺𝐹 𝑑2 𝑄 𝑑𝑥2 ] = 𝑄 (3.34𝑎) Phương trình (3.33a) và (3.34a) có thể viết lại dưới dạng 𝐸𝐽 𝑑4 𝑦 𝑑𝑥4 − 𝛼ℎ2 6 𝑑3 𝑄 𝑑𝑥3 = 𝑞 (3.33𝑏) 𝐸𝐽 𝑑3 𝑦 𝑑𝑥3 − 𝛼ℎ2 6 𝑑2 𝑄 𝑑𝑥2 = 𝑄 (3.34𝑏) Để nhận được các điều kiện biên của dầm thì kết hợp (3.31b) và (3.32b) ta có 𝑀𝛿 [− 𝑑𝑦 𝑑𝑥 + 𝛼𝑄 𝐺𝐹 ]| 0 𝑙 = 0 (3.35) Chú ý tới phương trình (3.32a), phương trình (3.31c) viết lại như sau 𝑄𝛿[𝑦]|0 𝑙 = 0 (3.36) Tóm lại, lý thuyết xét biến dạng trượt cho ta hai phương trình vi phân (3.33) và (3.34) đối với hai hàm y và Q: phương trình (3.33) là phương trình vi phân cân bằng giữa nội lực và ngoại lực, phương trình (3.34) là phương trình liên hệ giữa mômen uốn và lực cắt. Các phương trình (3.35) và (3.36) là các điều kiện biên ở hai đầu thanh. Ta xét điều kiên biên (3.35) Nếu như tại x=0 hoặc x=l, góc xoay θ do mômen uốn gây ra có biến phân 𝛿𝜃 = 𝛿 [− 𝑑𝑦 𝑑𝑥 + 𝛼𝑄 𝐺𝐹 ]| 0 𝑙 ≠ 0 𝑡ℎì 𝑀|0 𝑙 = 0 → 𝑙𝑖ê𝑛 𝑘ế𝑡 𝑘ℎớ𝑝(3.37𝑎) Nếu như góc xoay θ không có biến phân 𝛿𝜃 = 𝛿 [− 𝑑𝑦 𝑑𝑥 + 𝛼𝑄 𝐺𝐹 ]| 0 𝑙 = 0 𝑡ℎì 𝑀|0 𝑙 𝑏ấ𝑡 𝑘ỳ → 𝑙𝑖ê𝑛 𝑘ế𝑡 𝑛𝑔à𝑚(3.37𝑏)
  • 58. kiện (2.36), nếu như chuyển vị y tại x=0 hoặc x=l có biến phân. 𝛿[𝑦]|0 𝑙 ≠ 0 𝑡ℎì 𝑄|0 𝑙 = 0, → 𝑘ℎô𝑛𝑔 𝑐ó 𝑔ố𝑖 𝑡ự𝑎 (3.37𝑐) Nếu như 𝛿[𝑦]|0 𝑙 = 0 𝑡ℎì 𝑄|0 𝑙 𝑏ấ𝑡 𝑘ỳ, → 𝑙𝑖ê𝑛 𝑘ế𝑡 𝑔ố𝑖 𝑡ự𝑎 (3.37𝑑) Khi không xét biến dạng trượt, G→∞ hoặc h→0 thì các phương trình (3.33) và (3.34) cũng như các phương trình về điều kiện biên (3.35) và (3.36) hoặc (3.37) đều dẫn về lý thuyết dầm Euler- Bernoulli. Cho nên có thể nói lý thuyết xét biến dạng trượt nêu trên (xem hµm y vµ hµm Q lµ hai hµm ch-a biÕt) là lý thuyết đầy đủ về dầm. Cuối cùng cần lưu ý rằng khi xét tính liên tục về góc xoay giữa hai đoạn dầm là nói đến tính liên tục của góc xoay do mômen gây ra xác định theo công thức (3.24), không phải liên tục của góc xoay 𝑑𝑦 𝑑𝑥 . Hệ số Hệ số  là hệ số tập trung ứng suất cắt tại trục dầm. Đối với tiết diện chữ nhật =1.5, đối với tiết diện tròn =4/3. Tuy nhiên khi xét biến dạng trượt các trị trên thay đổi tương ứng bằng 1.2 và 1.11 [23, trg 132, 52, trg 492].Trong tính toán sau này tác giả dùng hệ số =1.2 đối với tiết diện chữ nhật. Phương pháp chung để xác định hệ số ỏ là cân bằng tổng theo chiều cao dầm công của ứng suất cắt thực hiện trên biến dạng trượt tương ứng với công lực cắt thực hiện trên biến dạng trượt tại trục dầm, vấn đề này đã được nhiều tác giả nghiên cứu [23] [25, trg 400]. 3.3. Giải bài toán khung có xét đến biến dạng trượt ngang bằng phương pháp phần tử hữu hạn 3.3.1. Bài toán khung Khung là kết cấu làm việc chịu uốn. Các đại lượng biến phân theo phương pháp nguyên lý cực trị Gauss là biến dạng và chuyển vị cho nên để tính khung trước tiên cần giả định dạng đường độ võng của các đoạn của khung, (thí dụ,
  • 59. hoặc rời rạc đường độ võng theo phương pháp phần tử hữu hạn hoặc theo phương pháp sai phân hữu hạn. Như vậy, khi giải trực tiếp phiếm hàm lượng cưỡng bức Z thì các ẩn của bài toán là: - các hệ số của hàm xấp xỉ ( ví dụ, của đa thức xấp xỉ ) hoặc - chuyển vị tại các điểm của sai phân hữu hạn hoặc - chuyển vị và góc xoay tại hai nút của phần tử hữu hạn sẽ là các đại lượng biến phân (các biến độc lập) của bài toán. Gọi )(xyi là đường độ võng của đoạn thứ i nào đó của khung với trục x trùng với trục dầm, iEJ là độ cứng uốn của nó, i là biến dạng uốn. Đối với đoạn thứ i của khung, ta có: 12 3 Ebh EJi  , dx dQ GFdx yd ii i    2 2 ,        dx dQ GFdx yd EJEJM ii iiii   2 2 . (3.38) ở đây E là mođun đàn hồi vật liệu dầm, b và h là chiều rộng và chiều cao tiết diên đoạn dầm.Tại điểm nối đoạn i và đoạn (i+1) chuyển vị và góc xoay hai đoạn phải bằng nhau (điều kiện liên tục), tại gối tựa chuyển vị bằng không, nếu là ngàm thì góc xoay cũng bằng không (hình 3.12).Đối với khung, cần xét thêm các chuyển vị tại nút khung. Trên hình (3.12) giới thiệu sơ đồ phần tử, nút khung phẳng một nhịp, một tầng, và tọa độ của các thanh. Do chỉ xét momen uốn và lực cắt trong thanh nên chỉ cần xét một chuyển vị ngang tại đầu cột tầng một và hai chuyển vị xoay tại hai nút của khung.
  • 60. phần tử b. Tọa độ các thanh Hình 3.12. Sơ đồ phần tử, nút và tọa độ các đoạn thanh của khung Khi giải bài toán cụ thể cần xét điều kiện động học của khung. Do xem lực cắt Q là đại lượng chưa biết nên ngoài việc giả thiết đường độ võng y của các đoạn khung, cần giả thiết dạng phân bố lực cắt Q. Dưới đây dùng phương pháp phần tử hữu hạn để xây dựng và giải bài toán khung chịu uốn có xét đến biến dạng trượt ngang. 3.4. Các ví dụ tính toán khung Ví dụ 3.4.1.Khung siêu tĩnh bậc 2, hình 3.13. Xác định nội lực và chuyển vị của khung chịu lực như hình 2, độ cứng uốn EJ=const. Rời rạc hóa kết cấu dầm ra thành npt phần tử. Các nút của phần tử phải trùng với vị trí đặt lực tập trung, hay vị trí thay đổi tiết diện, chiều dài các phần tử có thể khác nhau. Hình 3.13. Khung siêu tĩnh bậc 2
  • 61. đồ rời rạc kết cấu Mỗi phần tử có 6 ẩn 𝑤1, 𝑤2, 1, 2, 𝑞1, 𝑞2(lần lượt là, hai ẩn chuyển vị, hai ẩn góc xoay và hai ẩn lực cắt tại hai đầu mỗi phần tử) vậy nếunpt phần tử rời rạc thì tổng cộng có 6xnpt ẩn. Nhưng vì cần đảm bảo liên tục giữa các chuyển vị là chuyển vị của nút cuối phần tử thứ e bằng chuyển vị của nút đầu phầntử thứ  e 1 nên số ẩn của thanh sẽ nhỏ hơn 6xnpt.Khi giải ta chỉ cần đảm bảo điều kiện liên tục của chuyển vị còn điều kiện liên tục về góc xoay được xét bằng cách đưa vào các điều kiện ràng buộc. Ví dụ dầm trong (ví dụ 3.4.1, hình 3.13) ta chia thành 4 phần tử (hình 3.14). Khi chia cột thành 4 phần tử thì số nút cột sẽ là 5, thứ tự từ dưới lên trên là [1, 2, 3, 4, 5] (hình 3.14b1), số ẩn chuyển vị nw1=4, thứ tự từ trái sang phải là [1, 2, 3, 4] (hình 3.14c1), ở đây ẩn chuyển vị tại chân cột bằng không, ẩn góc xoay nwx1=8, thứ tự từ trái sang phải là [5, 6, 7, 8, 9, 10, 11, 12] (hình 3.14d1),ẩn lực cắt nq1=8, thứ tự từ trái sang phải là [13, 14, 15, 16, 17, 18, 19, 20] (hình 3.14e1). Khi chia dầm thành 4 phần tử thì số nút dầm sẽ là 5, thứ tự từ trái sang phải là [1, 2, 3, 4, 5] (hình 3.14b2), số ẩn chuyển vị nw2=3, thứ tự từ trái sang 0 21 21 22 22 23 23 0 32 33 34 35 36 37 38 39 SO DO NUT DAM SO DO AN CHUYEN VI CHIEU DAI PHAN TU 2 3 41 5 SO DO DAM NGANG SO DO AN LUC CAT nw2 nút nq2 01122334 1314151617181920 SODONUTCOTTRAI SODOANCHUYENVI CHIEUDAIPHANTU 23415 SODOCOTTRAI SODOANLUCCAT nw1nút nq1 56789101112 SODOANGOCXOAY nwx1 24 25 26 27 28 29 30 31 SO DO AN GOC XOAY nwx2
  • 62. 22, 23] (hình 3.14c2), ở đây ẩn chuyển vị tại hai đầu dầm bằng không, ẩn góc xoay nwx2=8, thứ tự từ trái sang phải là [24, 25, 26, 27, 28, 29, 30, 31] (hình 3.14d2), ẩn lực cắt nq2=8, thứ tự từ trái sang phải là [32, 33, 34, 35, 36, 37, 38, 39] (hình 3.14e2). Như vậy, tổng cộng số ẩn là 39 ẩn <2x6x6=72 ẩn. Gọi ma trận nw1 là ma trận chuyển vị có kích thước nw1(npt, 2) là ma trận có npt hàng và 2 cột chứa các ẩn số là chuyển vị tại hai đầu nút của các phần tử (hình 3.14c1). Các phần tử cột:        43:),4(1 ;32:),3(1 ;21:),2(1 ;10:),1(1     nw nw nw nw              43 32 21 10 1nw Gọi ma trận nwx1 là ma trận chuyển vị góc xoay có kích thước nwx1(npt, 2) là ma trận có pt n hàng và 2 cột chứa các ẩn số là góc xoay tại nút của các phần tử (hình 3.14).        1211:),4(1 ;109:),3(1 ;87:),2(1 ;65:),1(1     nwx nwx nwx nwx              1211 109 87 65 1nwx Gọi ma trận nq1 là ma trận lực cắt có kích thước nq1(npt, 2) là ma trận có pt n hàng và 2 cột chứa các ẩn số là lực cắt tại hai đầu nút của các phần tử (hình 3.14).
  • 63.   2019:),4(1 ;1817:),3(1 ;1615:),2(1 ;1413:),1(1     nwx nwx nwx nwx              2019 1817 1615 1413 1nwx
  • 64. dầm:        023:),4(2 ;2322:),3(2 ;2221:),2(2 ;210:),1(2     nw nw nw nw              023 2322 2221 210 2nw Gọi ma trận nwx2 là ma trận chuyển vị góc xoay có kích thước nwx2(npt, 2) là ma trận có pt n hàng và 2 cột chứa các ẩn số là góc xoay tại nút của các phần tử (hình 3.14).        3130:),4(2 ;2928:),3(2 ;2726:),2(2 ;2524:),1(2     nwx nwx nwx nwx              3130 2928 2726 2524 2nwx Gọi ma trận nq2 là ma trận lực cắt có kích thước nq2(npt, 2) là ma trận có pt n hàng và 2 cột chứa các ẩn số là lực cắt tại hai đầu nút của các phần tử (hình 3.14).        3938:),4(2 ;3736:),3(2 ;3534:),2(2 ;3332:),1(2     nq nq nq nq              3938 3736 3534 3332 2nq Sau khi biết ẩn số thực của dầmvà cột ta có thể xây dựng độ cứng tổng thể của khung (có rất nhiều cách ghép nối phần tử khác nhau, tùy vào trình độ lập trình của mỗi người nên tác giả không trình bày chi tiết cách ghép nối các phần tử lại để được ma trận độ cứng của toàn dầm và có thể xem trong code mô đun chương trình của tác giả)