Đề bài - đề kiểm tra 45 phút (1 tiết) - đề số 1 - chương 2 - hình học 9

\(\eqalign{ {1 \over {A{H^2}}}& = {1 \over {A{O^2}}} + {1 \over {C{A^2}}} \cr&= {1 \over {{R^2}}} + {1 \over {{{\left( {{R \over 2}} \right)}^2}}} \cr&= {1 \over {{R^2}}} + {4 \over {{R^2}}} = {5 \over {{R^2}}} \cr & \Rightarrow AH = {{R\sqrt 5 } \over 5}\cr& \Rightarrow AM = {{2R\sqrt 5 } \over 5} \cr} \)
Lựa chọn câu để xem lời giải nhanh hơn
  • Đề bài
  • LG a
  • LG b
  • LG c

Đề bài

Cho nửa đường tròn đường kính \(AB = 2R.\) Trên cùng nửa mặt phẳng bờ AB, vẽ hai tiếp tuyến Ax và By và một tiếp tuyến tại M cắt hai tiếp tuyến Ax và By tại C và D.

a. Chứng minh: \(AC + BD = CD\) và AC.BD không đổi.

b. Chứng minh đường tròn đường kính CD tiếp xúc với AB.

c. Cho \(AC = {R \over 2}\). Tính MA, MB và bán kính đường tròn ngoại tiếp BMD.

LG a

Phương pháp giải:

Sử dụng:

- Tính chất hai tiếp tuyến cắt nhau

- Tính chất đường phân giác của hai góc kề bù

-Hệ thức về cạnh và đường cao trong tam giác vuông

Lời giải chi tiết:

Đề bài - đề kiểm tra 45 phút (1 tiết) - đề số 1 - chương 2 - hình học 9

a. Ta có: \(CM = CA, DM = DB\) (tính chất hai tiếp tuyến cắt nhau)

mà \(CD = CM + MD \)\( CD = AC + BD\)

Lại có OC và OD lần lượt là hai phân giác của hai góc kề bù là \(\widehat {AOM}\) và \(\widehat {BOM} \Rightarrow \widehat {COD} = 90^\circ \)

Trong tam giác vuông COD có OM là đường cao nên ta có :

\(CM.DM = O{M^2} = {R^2}\) (không đổi)

\( AC.BD = {R^2}\)

LG b

Phương pháp giải:

Sử dụng:

-Tính chất đường trung bình của hình thang

-Chứng minh OI là bán kính của đường tròn đường kính CD và OI vuông góc với AB

Lời giải chi tiết:

b. Gọi I là tâm đường tròn đường kính CD, ta có OI là đường trung bình của hình thang vuông ACDB \(\) OI // AC mà \(AC AB\)

Do đó: \(IO AB\) và \(IO = {{CA + BD} \over 2} = {{CD} \over 2} = IC,\) chứng tỏ đường tròn đường kính CD tiếp xúc với AB.

LG c

Phương pháp giải:

Sử dụng:

-Tính chất hai tiếp tuyến cắt nhau

-Hệ thức về cạnh và đường cao trong tam giác vuông

Lời giải chi tiết:

c. Ta có: \(OA = OM (=R), CA = CM\) (tính chất tiếp tuyến cắt nhau)

Do đó OC là đường trung trực của đoạn AM.

Gọi H là giao điểm của OC và AM.

Xét tam giác vuông CAO có đường cao AH, ta có:

\(\eqalign{ {1 \over {A{H^2}}}& = {1 \over {A{O^2}}} + {1 \over {C{A^2}}} \cr&= {1 \over {{R^2}}} + {1 \over {{{\left( {{R \over 2}} \right)}^2}}} \cr&= {1 \over {{R^2}}} + {4 \over {{R^2}}} = {5 \over {{R^2}}} \cr & \Rightarrow AH = {{R\sqrt 5 } \over 5}\cr& \Rightarrow AM = {{2R\sqrt 5 } \over 5} \cr} \)

Ta có: \(\widehat {AMB} = 90^\circ \) (AB là đường kính), theo định lí Pi-ta-go :

\(BM = \sqrt {A{B^2} - A{M^2}} \)\(\; = \sqrt {{{\left( {2R} \right)}^2} - {{\left( {{{2R\sqrt 5 } \over 5}} \right)}^2}} \)\(\;= \sqrt {4{R^2} - {{20{R^2}} \over {25}}} = {{4R\sqrt 5 } \over 5}\)

Dễ thấy \(\widehat {OMD} = \widehat {OBD} = 90^\circ \) nên đường tròn ngoại tiếp MOD có đường kính là OD; đường tròn ngoại tiếp ODB có đường kính là OD. Suy ra đường tròn ngoại tiếp BMD có đường kính là OD.

Tứ giác MHOK là hình chữ nhật (K là giao điểm của OD và MB) nên \(OK = MH = {1 \over 2}AM = {{R\sqrt 5 } \over 5}\)

Xét tam giác vuông OMD, đường cao MK, ta có:

\(M{O^2} = OD.OK\) (hệ thức lượng)

\( \Rightarrow OD = {{M{O^2}} \over {OK}} = {{{R^2}} \over {{{R\sqrt 5 } \over 5}}} = R\sqrt 5 \)

Vậy bán kính đường tròn ngoại tiếp BMD là \({{R\sqrt 5 } \over 2}\)