Hướng dẫn remove bytes from string python - xóa byte khỏi chuỗi python

Có hai vấn đề ở đây, một trong số đó là vấn đề thực tế, vấn đề khác đang gây nhầm lẫn cho bạn, nhưng không phải là một vấn đề thực tế. Trước hết:

Show

Chuỗi của bạn là một đối tượng byte, tức là một chuỗi các byte 8 bit. Python 3 xử lý điều này khác với văn bản, đó là Unicode. Bạn lấy chuỗi từ đâu? Vì bạn muốn coi nó là văn bản, có lẽ bạn nên chuyển đổi nó thành một đối tượng str, được sử dụng để xử lý văn bản. Điều này thường được thực hiện với hàm .decode (), tức là:

somestring.decode('UTF-8')

Mặc dù gọi str () cũng hoạt động:

str(somestring, 'UTF8')

(Lưu ý rằng việc giải mã của bạn có thể là một cái gì đó khác hơn UTF8)

Tuy nhiên, đây không phải là câu hỏi thực tế của bạn. Câu hỏi thực tế của bạn là làm thế nào để tước một chuỗi byte. Và ASNWER là bạn làm điều đó giống như bạn chuỗi chuỗi văn bản:

somestring.strip()

Không có dải () tích hợp trong Python 2 hoặc Python 3. Có một chức năng dải trong mô-đun chuỗi trong Python 2:

from string import strip

Nhưng nó không phải là thực tế tốt để sử dụng vì chuỗi có phương thức dải (), giống như mười năm hoặc lâu hơn bây giờ. Vì vậy, trong Python 3 nó đã biến mất.

Bạn có thể thử một trong các phương pháp sau đây để loại bỏ B 'khỏi chuỗi byte. Kết quả là, bạn sẽ nhận được một chuỗi.

Cách tiếp cận 1: Sử dụng hàm Decode () Using decode() function

>>> t = Subprocess.check_output ('ls', shell = true) >>> tb'compress.py \ n '>>> b = t.decode (' utf-8 ') >>> b'compress. py \ n '
>>> t
b'compress.py\n'
>>> b=t.decode('utf-8')
>>> b
'compress.py\n'

Cách tiếp cận 2: Sử dụng hàm str () Using str() function

>>> t = Subprocess.check_output ('ls', shell = true) >>> tb'compress.py \ n '>>> a = str (t,' utf-8 ') >>> a'compress. py \ n '
>>> t
b'compress.py\n'
>>> a=str(t,'utf-8')
>>> a
'compress.py\n'

Các phần sau đây mô tả các loại tiêu chuẩn được tích hợp vào thông dịch viên.

Các loại tích hợp chính là số, trình tự, ánh xạ, lớp, trường hợp và ngoại lệ.

Một số lớp thu thập là có thể thay đổi. Các phương pháp thêm, trừ hoặc sắp xếp lại các thành viên của họ và không trả lại một mục cụ thể, không bao giờ trả lại bản thân bộ sưu tập mà

str(somestring, 'UTF8')
30.

Một số hoạt động được hỗ trợ bởi một số loại đối tượng; Cụ thể, thực tế, tất cả các đối tượng có thể được so sánh với sự bình đẳng, được kiểm tra giá trị sự thật và được chuyển đổi thành một chuỗi (với hàm

str(somestring, 'UTF8')
31 hoặc hàm
str(somestring, 'UTF8')
32 hơi khác nhau). Hàm thứ hai được sử dụng ngầm khi một đối tượng được viết bởi hàm
str(somestring, 'UTF8')
33.

Kiểm tra giá trị sự thật

Bất kỳ đối tượng nào cũng có thể được kiểm tra giá trị sự thật, để sử dụng trong điều kiện

str(somestring, 'UTF8')
34 hoặc
str(somestring, 'UTF8')
35 hoặc như là hoạt động của các hoạt động Boolean bên dưới.

Theo mặc định, một đối tượng được coi là đúng trừ khi lớp của nó xác định phương thức

str(somestring, 'UTF8')
36 trả về
str(somestring, 'UTF8')
37 hoặc phương thức
str(somestring, 'UTF8')
38 trả về số 0, khi được gọi với đối tượng. 1 Dưới đây là hầu hết các đối tượng tích hợp được coi là sai:

  • Các hằng số được xác định là sai:

    str(somestring, 'UTF8')
    
    30 và
    str(somestring, 'UTF8')
    
    37.

  • Không thuộc bất kỳ loại số nào:

    str(somestring, 'UTF8')
    
    41,
    str(somestring, 'UTF8')
    
    42,
    str(somestring, 'UTF8')
    
    43,
    str(somestring, 'UTF8')
    
    44,
    str(somestring, 'UTF8')
    
    45

  • Trình tự và bộ sưu tập trống:

    str(somestring, 'UTF8')
    
    46,
    str(somestring, 'UTF8')
    
    47,
    str(somestring, 'UTF8')
    
    48,
    str(somestring, 'UTF8')
    
    49,
    str(somestring, 'UTF8')
    
    50,
    str(somestring, 'UTF8')
    
    51

Các hoạt động và các chức năng tích hợp có kết quả boolean luôn trả về

str(somestring, 'UTF8')
41 hoặc
str(somestring, 'UTF8')
37 cho SAI và
str(somestring, 'UTF8')
54 hoặc
str(somestring, 'UTF8')
55 cho đúng, trừ khi có quy định khác. .

Hoạt động Boolean - str(somestring, 'UTF8') 57, str(somestring, 'UTF8') 56, ________ 160¶

Đây là các hoạt động Boolean, được đặt hàng theo ưu tiên tăng dần:

Hoạt động

Kết quả

Ghi chú

str(somestring, 'UTF8')
61

Nếu x là sai, thì y, khác x

(1)

str(somestring, 'UTF8')
62

Nếu x là sai, thì x, khác y

(2)

str(somestring, 'UTF8')
63

Nếu x là sai, thì

str(somestring, 'UTF8')
55, khác
str(somestring, 'UTF8')
37

(3)

Notes:

  1. Đây là một toán tử ngắn mạch, vì vậy nó chỉ đánh giá đối số thứ hai nếu câu thứ nhất là sai.

  2. Đây là một toán tử ngắn mạch, vì vậy nó chỉ đánh giá đối số thứ hai nếu câu thứ nhất là đúng.

  3. str(somestring, 'UTF8')
    
    60 có mức độ ưu tiên thấp hơn so với các toán tử phi Boolean, do đó
    str(somestring, 'UTF8')
    
    67 được hiểu là
    str(somestring, 'UTF8')
    
    68 và
    str(somestring, 'UTF8')
    
    69 là lỗi cú pháp.

So sánh lor

Có tám hoạt động so sánh trong Python. Tất cả đều có cùng mức độ ưu tiên (cao hơn so với các hoạt động của Boolean). So sánh có thể được xích ý nghĩa; Ví dụ,

str(somestring, 'UTF8')
70 tương đương với
str(somestring, 'UTF8')
71, ngoại trừ y chỉ được đánh giá một lần (nhưng trong cả hai trường hợp Z không được đánh giá khi
str(somestring, 'UTF8')
72 được tìm thấy là sai).

Bảng này tóm tắt các hoạt động so sánh:

Hoạt động

Nghĩa

str(somestring, 'UTF8')
73

hoàn toàn ít hơn

str(somestring, 'UTF8')
74

nhỏ hơn hoặc bằng

str(somestring, 'UTF8')
75

lớn hơn lớn hơn

str(somestring, 'UTF8')
76

lớn hơn hoặc bằng

str(somestring, 'UTF8')
77

bình đẳng

str(somestring, 'UTF8')
78

không công bằng

str(somestring, 'UTF8')
79

nhận dạng đối tượng

str(somestring, 'UTF8')
80

nhận dạng đối tượng phủ định

Đối tượng thuộc các loại khác nhau, ngoại trừ các loại số khác nhau, không bao giờ so sánh bằng nhau. Toán tử

str(somestring, 'UTF8')
77 luôn được xác định nhưng đối với một số loại đối tượng (ví dụ: các đối tượng lớp) tương đương với
str(somestring, 'UTF8')
79. Các toán tử
str(somestring, 'UTF8')
73,
str(somestring, 'UTF8')
74,
str(somestring, 'UTF8')
75 và
str(somestring, 'UTF8')
76 chỉ được xác định ở nơi chúng có ý nghĩa; Ví dụ, họ tăng ngoại lệ
str(somestring, 'UTF8')
87 khi một trong các đối số là một số phức.

Các trường hợp không giống nhau của một lớp thường so sánh là không bình đẳng trừ khi lớp xác định phương pháp

str(somestring, 'UTF8')
88.

Các trường hợp của một lớp không thể được đặt hàng liên quan đến các trường hợp khác của cùng một lớp hoặc các loại đối tượng khác, trừ khi lớp xác định đủ các phương thức

str(somestring, 'UTF8')
89,
str(somestring, 'UTF8')
90,
str(somestring, 'UTF8')
91 và
str(somestring, 'UTF8')
92 (nói chung,
str(somestring, 'UTF8')
89 và
str(somestring, 'UTF8')
88 là đủ Bạn muốn có ý nghĩa thông thường của các toán tử so sánh).

Hành vi của các toán tử

str(somestring, 'UTF8')
79 và
str(somestring, 'UTF8')
80 không thể được tùy chỉnh; Ngoài ra, chúng có thể được áp dụng cho bất kỳ hai đối tượng và không bao giờ nêu ra một ngoại lệ.

Hai hoạt động khác có cùng mức độ ưu tiên cú pháp,

str(somestring, 'UTF8')
97 và
str(somestring, 'UTF8')
98, được hỗ trợ bởi các loại có thể sử dụng được hoặc thực hiện phương pháp
str(somestring, 'UTF8')
99.iterable or implement the
str(somestring, 'UTF8')
99 method.

Các loại số - somestring.strip() 00, somestring.strip() 01, ________ 202¶

Có ba loại số riêng biệt: số nguyên, số điểm nổi và số phức. Ngoài ra, Booleans là một phân nhóm số nguyên. Số nguyên có độ chính xác không giới hạn. Số điểm nổi thường được thực hiện bằng cách sử dụng

somestring.strip()
03 trong C; Thông tin về độ chính xác và biểu diễn nội bộ của số điểm nổi cho máy mà chương trình của bạn đang chạy có sẵn trong
somestring.strip()
04. Các số phức tạp có một phần thực và tưởng tượng, mỗi số là một số điểm nổi. Để trích xuất các bộ phận này từ số Z phức, sử dụng
somestring.strip()
05 và
somestring.strip()
06. .

Các số được tạo bằng chữ số hoặc là kết quả của các hàm và toán tử tích hợp. Các số nguyên số nguyên chưa được trang trí (bao gồm hex, số bát phân và số nhị phân) mang lại số nguyên. Các chữ số có chứa một điểm thập phân hoặc số lượng dấu hiệu số mũ. Việc nối thêm

somestring.strip()
09 hoặc
somestring.strip()
10 vào một chữ số mang lại một số tưởng tượng (một số phức với phần thực bằng không) mà bạn có thể thêm vào một số nguyên hoặc nổi để có được một số phức với các phần thực và tưởng tượng.

Python hoàn toàn hỗ trợ số học hỗn hợp: Khi một toán tử số học nhị phân có các toán hạng các loại số khác nhau, toán hạng với loại hẹp hơn của Hồi được mở rộng so với loại khác, trong đó số nguyên hẹp hơn so với điểm nổi, hẹp hơn so với phức tạp. Một so sánh giữa các số của các loại khác nhau hoạt động như thể các giá trị chính xác của các số đó đã được so sánh. 2

Các hàm tạo

somestring.strip()
11,
somestring.strip()
12 và
somestring.strip()
13 có thể được sử dụng để tạo ra số lượng của một loại cụ thể.

Tất cả các loại số (ngoại trừ phức tạp) hỗ trợ các hoạt động sau (để biết ưu tiên của các hoạt động, xem ưu tiên của nhà điều hành):Operator precedence):

Hoạt động

Kết quả

Ghi chú

Tài liệu đầy đủ

somestring.strip()
14

tổng của x và y

somestring.strip()
15

sự khác biệt của x và y

somestring.strip()
16

sản phẩm của x và y

somestring.strip()
17

chỉ số của x và y

somestring.strip()
18

chỉ số của x và y

(1)

somestring.strip()
19

Phần còn lại của

somestring.strip()
17

(2)

somestring.strip()
21

x phủ định

somestring.strip()
22

x Không thay đổi

somestring.strip()
23

giá trị tuyệt đối hoặc độ lớn của x

somestring.strip()
24

somestring.strip()
25

x chuyển đổi thành số nguyên

(3)(6)

somestring.strip()
11

somestring.strip()
27

x chuyển đổi thành điểm nổi

(4)(6)

somestring.strip()
12

somestring.strip()
29

Một số phức tạp với phần thực re, phần tưởng tượng IM. IM mặc định về 0.

(6)

somestring.strip()
13

somestring.strip()
31

Liên hợp số phức C

somestring.strip()
32

cặp

somestring.strip()
33

(2)

somestring.strip()
34

somestring.strip()
35

x đến sức mạnh y

(5)

somestring.strip()
36

somestring.strip()
37

x đến sức mạnh y

(5)

Notes:

  1. Cũng được gọi là bộ phận số nguyên. Giá trị kết quả là toàn bộ số nguyên, mặc dù loại kết quả không nhất thiết là int. Kết quả luôn được làm tròn về phía trừ vô cực:

    somestring.strip()
    
    38 là
    str(somestring, 'UTF8')
    
    41,
    somestring.strip()
    
    40 là
    somestring.strip()
    
    41,
    somestring.strip()
    
    42 là
    somestring.strip()
    
    41 và
    somestring.strip()
    
    44 là
    str(somestring, 'UTF8')
    
    41.

  2. Không cho các số phức. Thay vào đó, hãy chuyển đổi sang phao bằng cách sử dụng

    somestring.strip()
    
    24 nếu thích hợp.

  3. Chuyển đổi từ điểm nổi sang số nguyên có thể làm tròn hoặc cắt ngắn như trong c; Xem các chức năng

    somestring.strip()
    
    47 và
    somestring.strip()
    
    48 để biết chuyển đổi được xác định rõ.

  4. Float cũng chấp nhận các chuỗi, NAN NAN và và Inf Inf với một tiền tố tùy chọn,+hoặc hoặc--không phải là một số (NAN) và vô cùng tích cực hoặc tiêu cực.

  5. Python định nghĩa

    somestring.strip()
    
    49 và
    somestring.strip()
    
    50 là
    str(somestring, 'UTF8')
    
    54, như là phổ biến đối với các ngôn ngữ lập trình.

  6. Các chữ số được chấp nhận bao gồm các chữ số

    str(somestring, 'UTF8')
    
    41 đến
    somestring.strip()
    
    53 hoặc bất kỳ unicode tương đương (điểm mã với thuộc tính
    somestring.strip()
    
    54).

    Xem https://www.unicode.org/public/13.0.0/ucd/extracted/derivingnumerictype.txt để biết danh sách đầy đủ các điểm mã với thuộc tính

    somestring.strip()
    
    54.

Tất cả các loại

somestring.strip()
56 (
somestring.strip()
00 và
somestring.strip()
01) cũng bao gồm các hoạt động sau:

Hoạt động

Kết quả

somestring.strip()
59

x cắt ngắn thành

somestring.strip()
60

somestring.strip()
61

X Làm tròn đến N chữ số, làm tròn một nửa đến chẵn. Nếu N bị bỏ qua, nó mặc định là 0.

somestring.strip()
62

somestring.strip()
60 lớn nhất

somestring.strip()
64

ít nhất

somestring.strip()
60> = x

Để biết các hoạt động số bổ sung, hãy xem các mô -đun

somestring.strip()
66 và
somestring.strip()
67.

Các hoạt động bitwise trên các loại số nguyên

Hoạt động bitwise chỉ có ý nghĩa cho số nguyên. Kết quả của các hoạt động bitwise được tính toán như thể được thực hiện trong hai bổ sung với một số lượng vô hạn các bit dấu hiệu.

Các ưu tiên của các hoạt động bitwise nhị phân đều thấp hơn các hoạt động số và cao hơn so với so sánh; Hoạt động đơn

somestring.strip()
68 có mức độ ưu tiên tương tự như các hoạt động số đơn khác (
somestring.strip()
69 và
somestring.strip()
70).

Bảng này liệt kê các hoạt động bitwise được sắp xếp theo mức độ ưu tiên tăng dần:

Hoạt động

Kết quả

x cắt ngắn thành

somestring.strip()
60

somestring.strip()
71

X Làm tròn đến N chữ số, làm tròn một nửa đến chẵn. Nếu N bị bỏ qua, nó mặc định là 0.

(4)

somestring.strip()
72

somestring.strip()
60 lớn nhất

(4)

somestring.strip()
73

ít nhất

somestring.strip()
60> = x

(4)

somestring.strip()
74

Để biết các hoạt động số bổ sung, hãy xem các mô -đun

somestring.strip()
66 và
somestring.strip()
67.

(1)(2)

somestring.strip()
75

Các hoạt động bitwise trên các loại số nguyên

(1)(3)

somestring.strip()
76

Hoạt động bitwise chỉ có ý nghĩa cho số nguyên. Kết quả của các hoạt động bitwise được tính toán như thể được thực hiện trong hai bổ sung với một số lượng vô hạn các bit dấu hiệu.

Notes:

  1. Các ưu tiên của các hoạt động bitwise nhị phân đều thấp hơn các hoạt động số và cao hơn so với so sánh; Hoạt động đơn

    somestring.strip()
    
    68 có mức độ ưu tiên tương tự như các hoạt động số đơn khác (
    somestring.strip()
    
    69 và
    somestring.strip()
    
    70).

  2. Bảng này liệt kê các hoạt động bitwise được sắp xếp theo mức độ ưu tiên tăng dần:

  3. Ghi chú

  4. BitWise hoặc của x và y

BitWise độc ​​quyền hoặc của x và y

Bit Wasing và của x và yabstract base class. In addition, it provides a few more methods:

X thay đổi còn lại bởi n bit()

x thay đổi đúng bởi n bit

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6

Các bit của x đảo ngược

Số lượng thay đổi tiêu cực là bất hợp pháp và khiến

somestring.strip()
77 được nâng lên.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6

Một sự thay đổi bên trái theo n bit tương đương với phép nhân bằng

somestring.strip()
78.

Một sự thay đổi đúng bởi n bit tương đương với phân chia sàn bởi
somestring.strip()
78.()

Thực hiện các tính toán này với ít nhất một bit mở rộng dấu hiệu trong một biểu diễn bổ sung hai hữu hạn (độ rộng bit hoạt động từ

somestring.strip()
80 trở lên) là đủ để có được kết quả tương tự như có vô số bit dấu hiệu.

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3

Số lượng thay đổi tiêu cực là bất hợp pháp và khiến

somestring.strip()
77 được nâng lên.

def bit_count(self):
    return bin(self).count("1")

Một sự thay đổi bên trái theo n bit tương đương với phép nhân bằng

somestring.strip()
78.

Một sự thay đổi đúng bởi n bit tương đương với phân chia sàn bởi
somestring.strip()
78.(length, byteorder, *, signed=False)

Thực hiện các tính toán này với ít nhất một bit mở rộng dấu hiệu trong một biểu diễn bổ sung hai hữu hạn (độ rộng bit hoạt động từ

somestring.strip()
80 trở lên) là đủ để có được kết quả tương tự như có vô số bit dấu hiệu.

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'

Các phương pháp bổ sung trên các loại số nguyên

Loại INT thực hiện lớp cơ sở trừu tượng

somestring.strip()
81. Ngoài ra, nó cung cấp thêm một vài phương pháp:

________ 282 ________ 283 ()

Trả về số lượng bit cần thiết để thể hiện số nguyên trong nhị phân, không bao gồm dấu hiệu và số không hàng đầu:

Chính xác hơn, nếu
somestring.strip()
84 là khác nhau, thì
somestring.strip()
85 là số nguyên dương duy nhất
somestring.strip()
86 sao cho
somestring.strip()
87. Tương đương, khi
somestring.strip()
23 đủ nhỏ để có logarit tròn chính xác, sau đó
somestring.strip()
89. Nếu
somestring.strip()
84 bằng không, thì
somestring.strip()
85 trả về
str(somestring, 'UTF8')
41.(bytes, byteorder, *, signed=False)

Tương đương với:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680

Mới trong phiên bản 3.1.bytes-like object or an iterable producing bytes.

Loại INT thực hiện lớp cơ sở trừu tượng

somestring.strip()
81. Ngoài ra, nó cung cấp thêm một vài phương pháp:

________ 282 ________ 283 ()

Mới trong phiên bản 3.2.

________ 282 ________ 310 ()()

Trả về một cặp số nguyên có tỷ lệ chính xác bằng số nguyên ban đầu và với mẫu số dương. Tỷ lệ số nguyên của số nguyên (số nguyên) luôn là số nguyên là tử số và

str(somestring, 'UTF8')
54 làm mẫu số.

Mới trong phiên bản 3.8.

Phương pháp bổ sung trên Float¶

Loại phao thực hiện lớp cơ sở trừu tượng

somestring.strip()
56. Float cũng có các phương pháp bổ sung sau.abstract base class. float also has the following additional methods.

________ 313 ________ 310 ()()

Trả về một cặp số nguyên có tỷ lệ chính xác bằng phao gốc và với mẫu số dương. Tăng

somestring.strip()
97 về tính vô cùng và
somestring.strip()
77 trên Nans.

________ 313 ________ 318 ()()

Trả về

str(somestring, 'UTF8')
55 Nếu thể hiện float là hữu hạn với giá trị tích phân và
str(somestring, 'UTF8')
37 nếu không:

str(somestring, 'UTF8')
0

Hai phương pháp hỗ trợ chuyển đổi đến và từ các chuỗi thập lục phân. Vì các phao Python sườn được lưu trữ bên trong dưới dạng số nhị phân, việc chuyển đổi một chiếc phao thành hoặc từ một chuỗi thập phân thường liên quan đến một lỗi làm tròn nhỏ. Ngược lại, chuỗi thập lục phân cho phép biểu diễn chính xác và đặc điểm kỹ thuật của các số điểm nổi. Điều này có thể hữu ích khi gỡ lỗi, và trong công việc số.

________ 313 ________ 322 ()()

Trả về một đại diện của một số điểm nổi dưới dạng chuỗi thập lục phân. Đối với các số điểm nổi hữu hạn, đại diện này sẽ luôn bao gồm một

from string import strip
23 hàng đầu và một
from string import strip
24 và số mũ.

ClassMethod ________ 313 ________ 326 (s) ¶(s)

Phương pháp lớp để trả về phao được biểu thị bằng một chuỗi thập lục phân s. Chuỗi S có thể có khoảng trắng dẫn đầu và dấu vết.

Lưu ý rằng

from string import strip
27 là một phương thức thể hiện, trong khi
from string import strip
28 là phương thức lớp.

Một chuỗi thập lục phân có biểu mẫu:

str(somestring, 'UTF8')
1

trong đó

from string import strip
29 tùy chọn có thể bằng
somestring.strip()
69 hoặc
somestring.strip()
70,
from string import strip
32 và
from string import strip
33 là các chuỗi của các chữ số thập lục phân và
from string import strip
34 là một số nguyên thập phân với một dấu hiệu hàng đầu tùy chọn. Trường hợp không đáng kể, và phải có ít nhất một chữ số thập lục phân trong số nguyên hoặc phân số. Cú pháp này tương tự như cú pháp được chỉ định trong Mục 6.4.4.2 của tiêu chuẩn C99, và cả cú pháp được sử dụng trong Java 1.5 trở đi. Cụ thể, đầu ra của
from string import strip
27 có thể sử dụng được làm nghĩa đen dấu phẩy động thập lục phân trong mã C hoặc Java, và các chuỗi thập lục phân được sản xuất bởi ký tự định dạng C tựa
from string import strip
36 hoặc Java tựa
from string import strip
37 được chấp nhận bởi
from string import strip
28.

Lưu ý rằng số mũ được viết theo số thập phân chứ không phải là thập lục phân và nó mang lại sức mạnh cho 2 để nhân hệ số. Ví dụ: chuỗi thập lục phân

from string import strip
39 đại diện cho số điểm nổi
from string import strip
40 hoặc
from string import strip
41:

str(somestring, 'UTF8')
2

Áp dụng chuyển đổi ngược lại

from string import strip
41 mang lại cho một chuỗi thập lục phân khác đại diện cho cùng một số:

str(somestring, 'UTF8')
3

Băm các loại số

Đối với các số

somestring.strip()
84 và
from string import strip
44, có thể thuộc các loại khác nhau, đó là một yêu cầu rằng
from string import strip
45 bất cứ khi nào
from string import strip
46 (xem tài liệu phương thức
from string import strip
47 để biết thêm chi tiết). Để dễ thực hiện và hiệu quả qua nhiều loại số (bao gồm
somestring.strip()
00,
somestring.strip()
01,
somestring.strip()
08 và
somestring.strip()
07) băm của Python cho các loại số dựa trên một hàm toán học được xác định cho bất kỳ số lượng hợp lý nào và do đó áp dụng cho tất cả các trường hợp của ____.
somestring.strip()
07, và tất cả các trường hợp hữu hạn của
somestring.strip()
01 và
somestring.strip()
08. Về cơ bản, chức năng này được đưa ra bằng cách giảm modulo
from string import strip
56 cho số nguyên tố cố định
from string import strip
56. Giá trị của
from string import strip
56 được cung cấp cho Python dưới dạng thuộc tính
from string import strip
59 của
from string import strip
60.

Chi tiết triển khai CPython: Hiện tại, số nguyên tố được sử dụng là

from string import strip
61 trên các máy có độ dài C 32 bit và
from string import strip
62 trên các máy có độ dài C 64 bit.
Currently, the prime used is
from string import strip
61 on machines with 32-bit C longs and
from string import strip
62 on machines with 64-bit C longs.

Dưới đây là các quy tắc chi tiết:

  • Nếu

    from string import strip
    
    63 là một số hợp lý không âm và
    from string import strip
    
    64 không chia hết cho
    from string import strip
    
    56, hãy xác định
    from string import strip
    
    66 là
    from string import strip
    
    67, trong đó
    from string import strip
    
    68 đưa ra nghịch đảo của
    from string import strip
    
    64
    from string import strip
    
    56.

  • Nếu

    from string import strip
    
    63 là một số hợp lý không âm và
    from string import strip
    
    64 là chia hết cho
    from string import strip
    
    56 (nhưng
    from string import strip
    
    74 là không) thì
    from string import strip
    
    64 không có modulo nghịch đảo
    from string import strip
    
    56 và quy tắc trên không áp dụng; Trong trường hợp này xác định
    from string import strip
    
    66 là giá trị không đổi
    from string import strip
    
    78.

  • Nếu

    from string import strip
    
    63 là số hợp lý âm định nghĩa
    from string import strip
    
    66 là
    from string import strip
    
    81. Nếu băm kết quả là
    somestring.strip()
    
    41, hãy thay thế nó bằng
    from string import strip
    
    83.

  • Các giá trị cụ thể

    from string import strip
    
    78 và
    from string import strip
    
    85 được sử dụng làm giá trị băm cho vô cực dương hoặc vô cực âm (tương ứng).

  • Đối với số

    somestring.strip()
    
    02
    from string import strip
    
    87, các giá trị băm của các phần thực và tưởng tượng được kết hợp bằng cách tính toán
    from string import strip
    
    88, giảm modulo
    from string import strip
    
    89 để nó nằm trong
    from string import strip
    
    90. Một lần nữa, nếu kết quả là
    somestring.strip()
    
    41, nó đã thay thế bằng
    from string import strip
    
    83.

Để làm rõ các quy tắc trên, ở đây, một số ví dụ mã Python, tương đương với hàm băm tích hợp, để tính toán hàm băm của một số hợp lý,

somestring.strip()
01 hoặc
somestring.strip()
02:

str(somestring, 'UTF8')
4

Các loại Iterator

Python hỗ trợ một khái niệm về việc lặp lại trên các thùng chứa. Điều này được thực hiện bằng hai phương pháp riêng biệt; Chúng được sử dụng để cho phép các lớp do người dùng xác định hỗ trợ lặp lại. Trình tự, được mô tả dưới đây chi tiết hơn, luôn hỗ trợ các phương pháp lặp.

Một phương thức cần được xác định cho các đối tượng container để cung cấp hỗ trợ có thể điều chỉnh được:iterable support:

________ 395 ________ 396 ()()

Trả về một đối tượng lặp. Đối tượng được yêu cầu để hỗ trợ giao thức Iterator được mô tả dưới đây. Nếu một container hỗ trợ các loại lặp khác nhau, các phương thức bổ sung có thể được cung cấp để yêu cầu cụ thể các trình lặp cho các loại lặp đó. .iterator object. The object is required to support the iterator protocol described below. If a container supports different types of iteration, additional methods can be provided to specifically request iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the

from string import strip
97 slot of the type structure for Python objects in the Python/C API.

Bản thân các đối tượng lặp được yêu cầu hỗ trợ hai phương thức sau, cùng nhau tạo thành giao thức iterator:

________ 398 ________ 396 ()()

Trả về chính đối tượng Iterator. Điều này là bắt buộc để cho phép cả hai thùng chứa và bộ lặp được sử dụng với các câu lệnh

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
00 và
str(somestring, 'UTF8')
97. Phương pháp này tương ứng với khe
from string import strip
97 của cấu trúc loại cho các đối tượng Python trong API Python/C.iterator object itself. This is required to allow both containers and iterators to be used with the
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
00 and
str(somestring, 'UTF8')
97 statements. This method corresponds to the
from string import strip
97 slot of the type structure for Python objects in the Python/C API.

________ 398 ________ 404 ()()

Trả lại mục tiếp theo từ trình lặp. Nếu không có mục nào nữa, hãy tăng ngoại lệ

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
05. Phương pháp này tương ứng với khe
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
06 của cấu trúc loại cho các đối tượng Python trong API Python/C.iterator. If there are no further items, raise the
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
05 exception. This method corresponds to the
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
06 slot of the type structure for Python objects in the Python/C API.

Python xác định một số đối tượng iterator để hỗ trợ lần lặp qua các loại trình tự chung và cụ thể, từ điển và các hình thức chuyên dụng khác. Các loại cụ thể không quan trọng ngoài việc thực hiện giao thức Iterator.

Khi một phương thức lặp ____ ____407 tăng

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
05, nó phải tiếp tục thực hiện như vậy trên các cuộc gọi tiếp theo. Việc triển khai không tuân theo tài sản này được coi là bị hỏng.

Loại máy phát

Các máy phát điện Python cung cấp một cách thuận tiện để thực hiện giao thức Iterator. Nếu một phương thức đối tượng container

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
09 được triển khai như một trình tạo, nó sẽ tự động trả về một đối tượng iterator (về mặt kỹ thuật, đối tượng trình tạo) cung cấp các phương thức
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
09 và
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
07. Thông tin thêm về máy phát điện có thể được tìm thấy trong tài liệu cho biểu thức năng suất.generators provide a convenient way to implement the iterator protocol. If a container object’s
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
09 method is implemented as a generator, it will automatically return an iterator object (technically, a generator object) supplying the
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
09 and
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
07 methods. More information about generators can be found in the documentation for the yield expression.

Các loại trình tự - >>> n = -37 >>> bin(n) '-0b100101' >>> n.bit_length() 6 12, >>> n = -37 >>> bin(n) '-0b100101' >>> n.bit_length() 6 13, ________ 414¶

Có ba loại trình tự cơ bản: danh sách, bộ dữ liệu và các đối tượng phạm vi. Các loại trình tự bổ sung được thiết kế để xử lý dữ liệu nhị phân và chuỗi văn bản được mô tả trong các phần chuyên dụng.binary data and text strings are described in dedicated sections.

Các hoạt động trình tự phổ biến

Các hoạt động trong bảng sau được hỗ trợ bởi hầu hết các loại trình tự, cả có thể thay đổi và bất biến.

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
15 ABC được cung cấp để dễ dàng thực hiện chính xác các hoạt động này trên các loại trình tự tùy chỉnh.

Bảng này liệt kê các hoạt động trình tự được sắp xếp theo mức độ ưu tiên tăng dần. Trong bảng, s và t là các chuỗi cùng loại, n, i, j và k là số nguyên và x là một đối tượng tùy ý đáp ứng bất kỳ loại hạn chế nào và giá trị do s.

Các hoạt động

str(somestring, 'UTF8')
97 và
str(somestring, 'UTF8')
98 có các ưu tiên tương tự như các hoạt động so sánh. Các hoạt động
somestring.strip()
69 (nối) và
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
19 (lặp lại) có mức độ ưu tiên tương tự như các hoạt động số tương ứng. 3

Hoạt động

Kết quả

Ghi chú

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
20

str(somestring, 'UTF8')
55 Nếu một mục S bằng x, khác
str(somestring, 'UTF8')
37

(1)

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
23

str(somestring, 'UTF8')
37 Nếu một mục S bằng x, khác
str(somestring, 'UTF8')
55

(1)

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
26

sự kết hợp của s và t

(6)(7)

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
27 hoặc
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
28

tương đương với việc thêm s vào chính nó n lần

(2)(7)

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
29

ith mặt hàng của s, gốc 0

(3)

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
30

cắt lát từ tôi đến j

(3)(4)

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
31

cắt lát từ i đến j với bước k

(3)(5)

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
32

chiều dài của s

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
33

Mục nhỏ nhất của s

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
34

mục lớn nhất của s

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
35

Chỉ số về lần xuất hiện đầu tiên của X trong S (AT hoặc After INDEX I và trước chỉ mục J)

(8)

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
36

tổng số lần xuất hiện của x trong s

Trình tự cùng loại cũng hỗ trợ so sánh. Cụ thể, các bộ dữ liệu và danh sách được so sánh từ vựng bằng cách so sánh các yếu tố tương ứng. Điều này có nghĩa là để so sánh bằng nhau, mọi phần tử phải so sánh bằng nhau và hai chuỗi phải cùng loại và có cùng độ dài. (Để biết chi tiết đầy đủ, hãy xem so sánh trong tham chiếu ngôn ngữ.)Comparisons in the language reference.)

Chuyển tiếp và đảo ngược các trình lặp qua các chuỗi có thể thay đổi truy cập các giá trị bằng cách sử dụng một chỉ mục. Chỉ số đó sẽ tiếp tục diễu hành về phía trước (hoặc lùi) ngay cả khi chuỗi cơ bản bị đột biến. Trình lặp chỉ chấm dứt khi gặp phải

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
37 hoặc
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
05 (hoặc khi chỉ số giảm xuống dưới 0).

Notes:

  1. Mặc dù các hoạt động

    str(somestring, 'UTF8')
    
    97 và
    str(somestring, 'UTF8')
    
    98 chỉ được sử dụng để kiểm tra ngăn chặn đơn giản trong trường hợp chung, một số trình tự chuyên dụng (như
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    41,
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    42 và
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    43) cũng sử dụng chúng để kiểm tra sau:

  2. Các giá trị N nhỏ hơn

    str(somestring, 'UTF8')
    
    41 được coi là
    str(somestring, 'UTF8')
    
    41 (mang lại một chuỗi trống cùng loại với S). Lưu ý rằng các mục trong chuỗi s không được sao chép; Chúng được tham chiếu nhiều lần. Điều này thường ám ảnh các lập trình viên Python mới; xem xét:

    str(somestring, 'UTF8')
    
    5

    Điều đã xảy ra là

    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    46 là danh sách một phần tử chứa một danh sách trống, vì vậy cả ba yếu tố của
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    47 đều tham khảo danh sách trống duy nhất này. Sửa đổi bất kỳ yếu tố nào của
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    48 sửa đổi danh sách duy nhất này. Bạn có thể tạo một danh sách các danh sách khác nhau theo cách này:

    str(somestring, 'UTF8')
    
    6

    Giải thích thêm có sẵn trong mục FAQ Làm cách nào để tạo một danh sách đa chiều ?.How do I create a multidimensional list?.

  3. Nếu I hoặc J là âm, chỉ số có liên quan đến phần cuối của chuỗi S:

    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    49 hoặc
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    50 được thay thế. Nhưng lưu ý rằng
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    51 vẫn là
    str(somestring, 'UTF8')
    
    41.

  4. Các lát của S từ I đến J được định nghĩa là chuỗi các mục có chỉ mục k sao cho

    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    53. Nếu i hoặc j lớn hơn
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    32, hãy sử dụng
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    32. Nếu tôi bị bỏ qua hoặc
    str(somestring, 'UTF8')
    
    30, hãy sử dụng
    str(somestring, 'UTF8')
    
    41. Nếu J bị bỏ qua hoặc
    str(somestring, 'UTF8')
    
    30, hãy sử dụng
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    32. Nếu tôi lớn hơn hoặc bằng J, lát cắt trống.

  5. Các lát của S từ I đến J với bước k được định nghĩa là chuỗi các mục có chỉ mục

    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    60 sao cho
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    61. Nói cách khác, các chỉ số là
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    62,
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    63,
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    64,
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    65, v.v., dừng lại khi đạt được J (nhưng không bao giờ bao gồm J). Khi K dương tính, tôi và J sẽ giảm xuống còn
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    32 nếu chúng lớn hơn. Khi K âm, I và J bị giảm xuống còn
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    67 nếu chúng lớn hơn. Nếu tôi hoặc J bị bỏ qua hoặc
    str(somestring, 'UTF8')
    
    30, chúng sẽ trở thành các giá trị cuối cùng của Google (kết thúc phụ thuộc vào dấu hiệu của K). Lưu ý, K không thể bằng không. Nếu K là
    str(somestring, 'UTF8')
    
    30, nó được đối xử như
    str(somestring, 'UTF8')
    
    54.

  6. Các chuỗi bất biến luôn luôn dẫn đến một đối tượng mới. Điều này có nghĩa là việc xây dựng một chuỗi bằng cách kết hợp lặp đi lặp lại sẽ có chi phí thời gian chạy bậc hai trong tổng chiều dài trình tự. Để có được chi phí thời gian chạy tuyến tính, bạn phải chuyển sang một trong những lựa chọn thay thế dưới đây:

    • Nếu kết hợp các đối tượng

      >>> n = -37
      >>> bin(n)
      '-0b100101'
      >>> n.bit_length()
      6
      
      41, bạn có thể xây dựng danh sách và sử dụng
      >>> n = -37
      >>> bin(n)
      '-0b100101'
      >>> n.bit_length()
      6
      
      72 ở cuối hoặc nếu không hãy ghi vào một ví dụ
      >>> n = -37
      >>> bin(n)
      '-0b100101'
      >>> n.bit_length()
      6
      
      73 và truy xuất giá trị của nó khi hoàn thành

    • Nếu kết hợp các đối tượng

      >>> n = -37
      >>> bin(n)
      '-0b100101'
      >>> n.bit_length()
      6
      
      42, bạn có thể sử dụng tương tự
      >>> n = -37
      >>> bin(n)
      '-0b100101'
      >>> n.bit_length()
      6
      
      75 hoặc
      >>> n = -37
      >>> bin(n)
      '-0b100101'
      >>> n.bit_length()
      6
      
      76 hoặc bạn có thể thực hiện kết nối tại chỗ với đối tượng
      >>> n = -37
      >>> bin(n)
      '-0b100101'
      >>> n.bit_length()
      6
      
      43. Các đối tượng
      >>> n = -37
      >>> bin(n)
      '-0b100101'
      >>> n.bit_length()
      6
      
      43 có thể thay đổi và có cơ chế tổng thể hiệu quả

    • Nếu kết hợp các đối tượng

      >>> n = -37
      >>> bin(n)
      '-0b100101'
      >>> n.bit_length()
      6
      
      13, hãy mở rộng
      >>> n = -37
      >>> bin(n)
      '-0b100101'
      >>> n.bit_length()
      6
      
      12 thay thế

    • Đối với các loại khác, hãy điều tra các tài liệu lớp có liên quan

  7. Một số loại trình tự (chẳng hạn như

    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    14) chỉ hỗ trợ các chuỗi vật phẩm tuân theo các mẫu cụ thể và do đó don don hỗ trợ nối tiếp hoặc lặp lại trình tự.

  8. >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    82 tăng
    somestring.strip()
    
    77 khi X không được tìm thấy trong s. Không phải tất cả các triển khai hỗ trợ thông qua các đối số bổ sung i và j. Những đối số này cho phép tìm kiếm hiệu quả các tiểu mục của chuỗi. Truyền các đối số bổ sung gần tương đương với việc sử dụng
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    84, chỉ không sao chép bất kỳ dữ liệu nào và với chỉ số được trả về liên quan đến việc bắt đầu chuỗi thay vì bắt đầu lát cắt.

Các loại trình tự bất biến Jor

Hoạt động duy nhất mà các loại trình tự bất biến thường thực hiện cũng không được thực hiện bởi các loại chuỗi có thể thay đổi là hỗ trợ cho

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
85 tích hợp.

Hỗ trợ này cho phép các chuỗi bất biến, chẳng hạn như các trường hợp

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
13, được sử dụng làm khóa
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
87 và được lưu trữ trong các trường hợp
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
88 và
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
89.

Cố gắng băm một chuỗi bất biến chứa các giá trị không thể đo được sẽ dẫn đến

str(somestring, 'UTF8')
87.

Các loại trình tự có thể thay đổi

Các hoạt động trong bảng sau được xác định trên các loại chuỗi có thể thay đổi.

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
91 ABC được cung cấp để dễ dàng thực hiện chính xác các hoạt động này trên các loại trình tự tùy chỉnh.

Trong bảng S là một thể hiện của một loại chuỗi có thể thay đổi, t là bất kỳ đối tượng có thể lặp lại và X là một đối tượng tùy ý đáp ứng bất kỳ loại hạn chế nào và giá trị do S áp đặt (ví dụ,

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
43 chỉ chấp nhận số nguyên đáp ứng hạn chế giá trị
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
93).

Hoạt động

Kết quả

Ghi chú

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
94

Mục I của S được thay thế bởi x

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
95

Slice of s từ i đến j được thay thế bằng nội dung của tần số t có thể

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
96

Giống như

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
97

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
98

Các yếu tố của

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
31 được thay thế bằng các yếu tố của T

(1)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
00

Xóa các yếu tố của

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
31 khỏi danh sách

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
02

nối X đến cuối chuỗi (giống như

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
03)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
04

Xóa tất cả các mục khỏi S (giống như

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
05)

(5)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
06

Tạo một bản sao nông của S (giống như

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
07)

(5)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
08 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
09

Mở rộng s với nội dung của t (phần lớn giống như

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
10)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
11

Cập nhật s với nội dung của nó lặp lại n lần

(6)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
12

Chèn X vào S tại chỉ mục được đưa ra bởi I (giống như

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
13)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
14 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
15

Lấy mục tại I và cũng loại bỏ nó khỏi S

(2)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
16

Xóa mục đầu tiên khỏi s trong đó

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
29 bằng x

(3)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
18

đảo ngược các vật phẩm của s tại chỗ

(4)

Notes:

  1. T phải có cùng chiều dài với lát cắt mà nó đang thay thế.

  2. Đối số tùy chọn I mặc định là

    somestring.strip()
    
    41, do đó theo mặc định, mục cuối cùng được xóa và trả về.

  3. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    20 tăng
    somestring.strip()
    
    77 khi X không được tìm thấy trong s.

  4. Phương pháp

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    22 sửa đổi trình tự tại chỗ cho nền kinh tế của không gian khi đảo ngược một chuỗi lớn. Để nhắc nhở người dùng rằng nó hoạt động bằng hiệu ứng phụ, nó không trả về trình tự đảo ngược.

  5. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    23 và
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    24 được bao gồm để thống nhất với các giao diện của các container có thể thay đổi mà không ủng hộ các hoạt động cắt lát (như
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    87 và
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    88).
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    24 không phải là một phần của
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    91 ABC, nhưng hầu hết các lớp trình tự đột biến cụ thể đều cung cấp nó.

    Mới trong Phiên bản 3.3:

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    23 và
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    24.
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    23 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    24 methods.

  6. Giá trị n là một số nguyên hoặc một đối tượng thực hiện

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31. Giá trị bằng không và âm của n xóa chuỗi. Các mục trong chuỗi không được sao chép; Chúng được tham chiếu nhiều lần, như được giải thích cho
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    27 theo các hoạt động trình tự phổ biến.Common Sequence Operations.

Danh sách

Danh sách là các chuỗi có thể thay đổi, thường được sử dụng để lưu trữ các bộ sưu tập các mục đồng nhất (trong đó mức độ tương tự chính xác sẽ thay đổi theo ứng dụng).

Lớp ________ 533 ([itable]) ¶([iterable])

Danh sách có thể được xây dựng theo nhiều cách:

  • Sử dụng một cặp dấu ngoặc vuông để biểu thị danh sách trống:

    str(somestring, 'UTF8')
    
    48

  • Sử dụng dấu ngoặc vuông, tách các vật phẩm với dấu phẩy:

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    35,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    36

  • Sử dụng danh sách hiểu biết:

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    37

  • Sử dụng hàm tạo loại:

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    38 hoặc
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    39

Hàm tạo xây dựng một danh sách có các mục giống nhau và theo cùng thứ tự với các mục ITBER. Có thể lặp lại có thể là một chuỗi, một thùng chứa hỗ trợ lặp hoặc đối tượng lặp. Nếu có thể là một danh sách, một bản sao được tạo và trả lại, tương tự như

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
40. Ví dụ:
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
41 trả về
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
43 trả về
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
44. Nếu không có đối số nào được đưa ra, hàm tạo tạo một danh sách trống mới,
str(somestring, 'UTF8')
48.

Nhiều hoạt động khác cũng tạo ra các danh sách, bao gồm cả

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
46 tích hợp.

Danh sách thực hiện tất cả các hoạt động trình tự chung và có thể thay đổi. Danh sách cũng cung cấp phương pháp bổ sung sau:common and mutable sequence operations. Lists also provide the following additional method:

________ 547 (*, key = none, lùi = sai) ¶(*, key=None, reverse=False)

Phương pháp này sắp xếp danh sách tại chỗ, chỉ sử dụng so sánh

str(somestring, 'UTF8')
73 giữa các mục. Các trường hợp ngoại lệ không bị triệt tiêu - nếu bất kỳ hoạt động so sánh nào thất bại, toàn bộ hoạt động sắp xếp sẽ thất bại (và danh sách có thể sẽ bị bỏ lại ở trạng thái sửa đổi một phần).

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
49 chấp nhận hai đối số chỉ có thể được truyền bằng từ khóa (đối số chỉ từ khóa):keyword-only arguments):

Chính chỉ định hàm của một đối số được sử dụng để trích xuất khóa so sánh từ mỗi phần tử danh sách (ví dụ:

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
50). Khóa tương ứng với từng mục trong danh sách được tính một lần và sau đó được sử dụng cho toàn bộ quy trình sắp xếp. Giá trị mặc định của
str(somestring, 'UTF8')
30 có nghĩa là các mục danh sách được sắp xếp trực tiếp mà không tính toán giá trị khóa riêng.

Tiện ích

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
52 có sẵn để chuyển đổi hàm CMP kiểu 2.x thành chức năng chính.

Đảo ngược là một giá trị boolean. Nếu được đặt thành

str(somestring, 'UTF8')
55, thì các yếu tố danh sách được sắp xếp như thể mỗi so sánh được đảo ngược.

Phương pháp này sửa đổi trình tự tại chỗ cho nền kinh tế của không gian khi sắp xếp một chuỗi lớn. Để nhắc nhở người dùng rằng nó hoạt động bằng hiệu ứng phụ, nó không trả về trình tự được sắp xếp (sử dụng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
46 để yêu cầu rõ ràng một thể hiện danh sách được sắp xếp mới).

Phương pháp

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
49 được đảm bảo là ổn định. Một loại ổn định nếu nó đảm bảo không thay đổi thứ tự tương đối của các yếu tố so sánh bằng nhau - điều này rất hữu ích để sắp xếp trong nhiều lần vượt qua (ví dụ, sắp xếp theo bộ phận, sau đó theo mức lương).

Để sắp xếp các ví dụ và một hướng dẫn sắp xếp ngắn gọn, xem phân loại cách.Sorting HOW TO.

Chi tiết triển khai CPYThon: Trong khi một danh sách đang được sắp xếp, hiệu quả của việc cố gắng đột biến hoặc thậm chí kiểm tra, danh sách không được xác định. Việc triển khai C của Python làm cho danh sách xuất hiện trống trong thời gian và tăng

somestring.strip()
77 nếu nó có thể phát hiện rằng danh sách đã bị đột biến trong một loại. While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration, and raises
somestring.strip()
77 if it can detect that the list has been mutated during a sort.

Bài hát

Các bộ dữ liệu là các trình tự bất biến, thường được sử dụng để lưu trữ các bộ sưu tập dữ liệu không đồng nhất (như 2 bộ phận được sản xuất bởi

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
57 tích hợp). Các bộ dữ liệu cũng được sử dụng cho các trường hợp cần một chuỗi dữ liệu đồng nhất bất biến (chẳng hạn như cho phép lưu trữ trong ví dụ
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
88 hoặc
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
87).

Lớp ________ 560 ([itable]) ¶([iterable])

Tuples có thể được xây dựng theo một số cách:

  • Sử dụng một cặp dấu ngoặc đơn để biểu thị bộ tuple trống:

    str(somestring, 'UTF8')
    
    47

  • Sử dụng dấu phẩy theo dõi cho một bộ phim singleton:

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    62 hoặc
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    63

  • Tách các mục với dấu phẩy:

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    64 hoặc
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    65

  • Sử dụng

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    66 tích hợp:
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    66 hoặc
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    68

Hàm tạo xây dựng một tuple có các vật phẩm giống nhau và theo cùng thứ tự với các vật phẩm của ITerable. Có thể lặp lại có thể là một chuỗi, một thùng chứa hỗ trợ lặp hoặc đối tượng lặp. Nếu có thể là một tuple, nó sẽ được trả lại không thay đổi. Ví dụ:

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
69 trả về
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
70 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
71 trả về
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
72. Nếu không có đối số nào được đưa ra, hàm tạo tạo một bộ tuple trống mới,
str(somestring, 'UTF8')
47.

Lưu ý rằng đó thực sự là dấu phẩy tạo ra một tuple, không phải dấu ngoặc đơn. Các dấu ngoặc đơn là tùy chọn, ngoại trừ trong trường hợp tuple trống hoặc khi chúng cần thiết để tránh sự mơ hồ của cú pháp. Ví dụ:

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74 là một cuộc gọi chức năng với ba đối số, trong khi
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
75 là một cuộc gọi chức năng với 3-tuple là đối số duy nhất.

Tuples thực hiện tất cả các hoạt động trình tự phổ biến.common sequence operations.

Đối với các bộ sưu tập dữ liệu không đồng nhất trong đó quyền truy cập theo tên rõ ràng hơn truy cập theo chỉ mục,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
76 có thể là một lựa chọn phù hợp hơn một đối tượng tuple đơn giản.

Các dãy¶

Loại

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
14 đại diện cho một chuỗi số bất biến và thường được sử dụng để lặp lại một số lần cụ thể trong các vòng
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
00.

Lớp ________ 579 (Dừng) Lớp ____ 579 (Bắt đầu, Dừng [, Bước])(stop)¶ class
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
79(start, stop[, step])

Các đối số cho hàm tạo phạm vi phải là số nguyên (tích hợp

somestring.strip()
00 hoặc bất kỳ đối tượng nào thực hiện phương thức đặc biệt
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31). Nếu đối số bước bị bỏ qua, nó mặc định là
str(somestring, 'UTF8')
54. Nếu đối số bắt đầu bị bỏ qua, nó mặc định là
str(somestring, 'UTF8')
41. Nếu bước bằng không,
somestring.strip()
77 được nâng lên.

Đối với một bước tích cực, nội dung của một phạm vi

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
86 được xác định bởi công thức
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
87 trong đó
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
88 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
89.

Đối với một bước âm, nội dung của phạm vi vẫn được xác định bởi công thức

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
87, nhưng các ràng buộc là
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
88 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
92.

Một đối tượng phạm vi sẽ trống nếu

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
93 không đáp ứng ràng buộc giá trị. Phạm vi hỗ trợ các chỉ số tiêu cực, nhưng chúng được hiểu là lập chỉ mục từ phần cuối của chuỗi được xác định bởi các chỉ số dương.

Phạm vi chứa các giá trị tuyệt đối lớn hơn

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
94 được cho phép nhưng một số tính năng (như
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
95) có thể tăng
somestring.strip()
97.

Ví dụ phạm vi:

str(somestring, 'UTF8')
7

Phạm vi thực hiện tất cả các hoạt động trình tự phổ biến ngoại trừ việc kết hợp và lặp lại (do thực tế là các đối tượng phạm vi chỉ có thể đại diện cho các chuỗi theo mô hình nghiêm ngặt và sự lặp lại và nối thường sẽ vi phạm mô hình đó).common sequence operations except concatenation and repetition (due to the fact that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will usually violate that pattern).

________ 597¶

Giá trị của tham số bắt đầu (hoặc

str(somestring, 'UTF8')
41 nếu tham số không được cung cấp)

________ 599¶

Giá trị của tham số dừng

________ 600¶

Giá trị của tham số bước (hoặc

str(somestring, 'UTF8')
54 nếu tham số không được cung cấp)

Ưu điểm của loại

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
14 so với
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
12 hoặc
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
13 thông thường là một đối tượng
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
14 sẽ luôn luôn có cùng một lượng bộ nhớ (nhỏ), bất kể kích thước của phạm vi nó đại diện cho , tính toán các mặt hàng riêng lẻ và phụ khi cần thiết).

Các đối tượng phạm vi thực hiện

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
15 ABC và cung cấp các tính năng như kiểm tra ngăn chặn, tra cứu chỉ mục phần tử, cắt và hỗ trợ cho các chỉ số âm (xem các loại trình tự - danh sách, tuple, phạm vi):Sequence Types — list, tuple, range):

str(somestring, 'UTF8')
8

Các đối tượng phạm vi thử nghiệm cho sự bình đẳng với

str(somestring, 'UTF8')
77 và
str(somestring, 'UTF8')
78 so sánh chúng là trình tự. Đó là, hai đối tượng phạm vi được coi là bằng nhau nếu chúng đại diện cho cùng một chuỗi các giá trị. .

Đã thay đổi trong phiên bản 3.2: Thực hiện trình tự ABC. Hỗ trợ cắt lát và chỉ số tiêu cực. Kiểm tra

somestring.strip()
00 đối tượng để thành viên trong thời gian không đổi thay vì lặp lại thông qua tất cả các mục.Implement the Sequence ABC. Support slicing and negative indices. Test
somestring.strip()
00 objects for membership in constant time instead of iterating through all items.

Đã thay đổi trong phiên bản 3.3: Xác định ‘== và và‘! = Để so sánh các đối tượng phạm vi dựa trên chuỗi các giá trị mà chúng xác định (thay vì so sánh dựa trên nhận dạng đối tượng).Define ‘==’ and ‘!=’ to compare range objects based on the sequence of values they define (instead of comparing based on object identity).

Mới trong phiên bản 3.3: Các thuộc tính

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
06,
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
07 và
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
08.The
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
06,
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
07 and
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
08 attributes.

Xem thêm

  • Công thức Linspace cho thấy cách thực hiện một phiên bản lười biếng của phạm vi phù hợp cho các ứng dụng điểm nổi.

Loại chuỗi văn bản - ________ 441¶

Dữ liệu văn bản trong Python được xử lý với các đối tượng

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
41 hoặc chuỗi. Chuỗi là chuỗi bất biến của các điểm mã unicode. Chuỗi chữ được viết theo nhiều cách khác nhau:sequences of Unicode code points. String literals are written in a variety of ways:

  • Trích dẫn đơn:

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    23

  • Báo giá kép:

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    24

  • Triple Trích dẫn:

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    25,
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    26

Các chuỗi được trích dẫn ba có thể kéo dài nhiều dòng - tất cả các khoảng trắng liên quan sẽ được bao gồm trong chuỗi theo nghĩa đen.

Chuỗi chữ là một phần của một biểu thức duy nhất và chỉ có khoảng trắng giữa chúng sẽ được chuyển đổi hoàn toàn thành một chuỗi theo nghĩa đen. Đó là,

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
27.

Xem Chuỗi và Byte theo nghĩa đen để biết thêm về các hình thức khác nhau của chuỗi theo nghĩa đen, bao gồm các chuỗi thoát được hỗ trợ và tiền tố

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
86 (Hồi RAW) vô hiệu hóa hầu hết các trình tự thoát.String and Bytes literals for more about the various forms of string literal, including supported escape sequences, and the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
86 (“raw”) prefix that disables most escape sequence processing.

Các chuỗi cũng có thể được tạo từ các đối tượng khác bằng hàm tạo

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
41.

Vì không có loại ký tự riêng biệt nào, việc lập chỉ mục một chuỗi tạo ra các chuỗi có độ dài 1. nghĩa là, đối với một chuỗi không trống,

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
30.

Cũng không có loại chuỗi có thể thay đổi, nhưng

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
72 hoặc
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
73 có thể được sử dụng để xây dựng các chuỗi hiệu quả từ nhiều đoạn.

Đã thay đổi trong phiên bản 3.3: Để tương thích ngược với sê -ri Python 2, tiền tố

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
33 một lần nữa được cho phép trên các chữ viết. Nó không có tác dụng đối với ý nghĩa của các chữ cái và không thể được kết hợp với tiền tố
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
86.For backwards compatibility with the Python 2 series, the
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
33 prefix is once again permitted on string literals. It has no effect on the meaning of string literals and cannot be combined with the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
86 prefix.

Lớp ________ 635 (Object = '') ¶ Lớp ________ 635 (Object = b '', expoding = 'utf-8', error = 'nghiêm ngặt')(object='')¶ class
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
35(object=b'', encoding='utf-8', errors='strict')

Trả về một phiên bản chuỗi của đối tượng. Nếu đối tượng không được cung cấp, hãy trả về chuỗi trống. Mặt khác, hành vi của

str(somestring, 'UTF8')
32 phụ thuộc vào việc mã hóa hay lỗi được đưa ra, như sau.string version of object. If object is not provided, returns the empty string. Otherwise, the behavior of
str(somestring, 'UTF8')
32 depends on whether encoding or errors is given, as follows.

Nếu không mã hóa và lỗi nào được đưa ra,

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
38 trả về
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
39, đó là biểu diễn chuỗi không chính thức hoặc có thể in độc đáo của đối tượng. Đối với các đối tượng chuỗi, đây là chuỗi chính. Nếu đối tượng không có phương thức
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
40, thì
str(somestring, 'UTF8')
32 sẽ quay trở lại để trả lại
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
42.

Nếu ít nhất một mã hóa hoặc lỗi được đưa ra, đối tượng phải là một đối tượng giống như byte (ví dụ:

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42 hoặc
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
43). Trong trường hợp này, nếu đối tượng là đối tượng
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42 (hoặc
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
43), thì
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
47 tương đương với
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
48. Mặt khác, đối tượng byte bên dưới đối tượng bộ đệm được lấy trước khi gọi
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
49. Xem các loại chuỗi nhị phân - Byte, bytearray, bộ nhớ và giao thức bộ đệm để biết thông tin về các đối tượng bộ đệm.bytes-like object (e.g.
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42 or
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
43). In this case, if object is a
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42 (or
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
43) object, then
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
47 is equivalent to
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
48. Otherwise, the bytes object underlying the buffer object is obtained before calling
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
49. See Binary Sequence Types — bytes, bytearray, memoryview and Buffer Protocol for information on buffer objects.

Chuyển một đối tượng

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42 cho
str(somestring, 'UTF8')
32 mà không có đối số mã hóa hoặc lỗi nằm trong trường hợp đầu tiên trả lại biểu diễn chuỗi không chính thức (xem thêm tùy chọn dòng lệnh
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
52 cho Python). Ví dụ:

str(somestring, 'UTF8')
9

Để biết thêm thông tin về lớp

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
41 và các phương thức của nó, hãy xem loại chuỗi văn bản - phần STR và phần Chuỗi bên dưới. Để đầu ra các chuỗi được định dạng, hãy xem các phần SHIGRE BÀI TẬP và Định dạng Syntax. Ngoài ra, xem phần Dịch vụ xử lý văn bản.Text Sequence Type — str and the String Methods section below. To output formatted strings, see the Formatted string literals and Format String Syntax sections. In addition, see the Text Processing Services section.

Phương pháp chuỗi

Các chuỗi thực hiện tất cả các hoạt động trình tự chung, cùng với các phương pháp bổ sung được mô tả dưới đây.common sequence operations, along with the additional methods described below.

Các chuỗi cũng hỗ trợ hai kiểu định dạng chuỗi, một loại cung cấp một mức độ linh hoạt và tùy chỉnh lớn (xem

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
54, cú pháp chuỗi định dạng và định dạng chuỗi tùy chỉnh) và kiểu khác dựa trên kiểu C
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
55. Để sử dụng chính xác, nhưng thường nhanh hơn cho các trường hợp, nó có thể xử lý (định dạng chuỗi kiểu printf).Format String Syntax and Custom String Formatting) and the other based on C
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
55 style formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the cases it can handle (printf-style String Formatting).

Phần dịch vụ xử lý văn bản của thư viện tiêu chuẩn bao gồm một số mô -đun khác cung cấp các tiện ích liên quan đến văn bản khác nhau (bao gồm hỗ trợ biểu thức thông thường trong mô -đun

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
56).Text Processing Services section of the standard library covers a number of other modules that provide various text related utilities (including regular expression support in the
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
56 module).

________ 657 ________ 658 ()()

Trả về một bản sao của chuỗi với ký tự đầu tiên được viết hoa và phần còn lại.

Thay đổi trong phiên bản 3.8: Nhân vật đầu tiên hiện được đưa vào TitleCase thay vì chữ hoa. Điều này có nghĩa là các nhân vật như Digraphs sẽ chỉ có chữ cái đầu tiên được viết hoa, thay vì toàn bộ ký tự.The first character is now put into titlecase rather than uppercase. This means that characters like digraphs will only have their first letter capitalized, instead of the full character.

________ 657 ________ 660 ()()

Trả về một bản sao được giới thiệu của chuỗi. Các chuỗi casefold có thể được sử dụng để kết hợp không đồng ý.

Casfolding tương tự như LowerCasing nhưng tích cực hơn vì nó nhằm loại bỏ tất cả các trường hợp phân biệt trong một chuỗi. Ví dụ, chữ thường của Đức

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
61 tương đương với
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
62. Vì nó đã là chữ thường,
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
63 sẽ không làm gì với
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
61;
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
65 chuyển đổi nó thành
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
62.

Thuật toán Casefold được mô tả trong Phần 3.13 của tiêu chuẩn Unicode.

Mới trong phiên bản 3.3.

________ 657 ________ 668 (chiều rộng [, fillchar]) ¶(width[, fillchar])

Trả về tập trung trong một chuỗi chiều rộng chiều dài. Đệm được thực hiện bằng cách sử dụng fillchar được chỉ định (mặc định là không gian ASCII). Chuỗi ban đầu được trả về nếu chiều rộng nhỏ hơn hoặc bằng

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
32.

________ 657 ________ 671 (phụ [, bắt đầu [, kết thúc]])(sub[, start[, end]])

Trả về số lần xuất hiện không chồng chéo của phụ con trong phạm vi [bắt đầu, kết thúc]. Đối số tùy chọn bắt đầu và kết thúc được hiểu là trong ký hiệu lát cắt.

________ 657 ________ 673 (mã hóa = 'UTF-8', lỗi = 'nghiêm ngặt') ¶(encoding='utf-8', errors='strict')

Trả về một phiên bản được mã hóa của chuỗi dưới dạng đối tượng byte. Mã hóa mặc định là

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
74. Lỗi có thể được đưa ra để đặt sơ đồ xử lý lỗi khác. Mặc định cho các lỗi là
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
75, có nghĩa là các lỗi mã hóa tăng
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
76. Các giá trị có thể khác là
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
77,
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
78,
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
79,
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
80 và bất kỳ tên nào khác được đăng ký qua
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
81, xem phần xử lý lỗi phần. Để biết danh sách các mã hóa có thể, hãy xem phần Mã hóa tiêu chuẩn.Error Handlers. For a list of possible encodings, see section Standard Encodings.

Theo mặc định, đối số lỗi không được kiểm tra các hiệu suất tốt nhất, nhưng chỉ được sử dụng ở lỗi mã hóa đầu tiên. Kích hoạt chế độ phát triển Python hoặc sử dụng bản dựng gỡ lỗi để kiểm tra lỗi.Python Development Mode, or use a debug build to check errors.

Đã thay đổi trong phiên bản 3.1: Hỗ trợ cho các đối số từ khóa được thêm vào.Support for keyword arguments added.

Đã thay đổi trong phiên bản 3.9: Các lỗi hiện được kiểm tra ở chế độ phát triển và ở chế độ gỡ lỗi.The errors is now checked in development mode and in debug mode.

________ 657 ________ 683 (hậu tố [, bắt đầu [, kết thúc]]) ¶(suffix[, start[, end]])

Trả về

str(somestring, 'UTF8')
55 Nếu chuỗi kết thúc bằng hậu tố được chỉ định, nếu không hãy trả về
str(somestring, 'UTF8')
37. Hậu tố cũng có thể là một bộ hậu tố để tìm kiếm. Với bắt đầu tùy chọn, kiểm tra bắt đầu ở vị trí đó. Với kết thúc tùy chọn, dừng so sánh ở vị trí đó.

________ 657 ________ 687 (tabSize = 8) ¶(tabsize=8)

Trả về một bản sao của chuỗi trong đó tất cả các ký tự tab được thay thế bằng một hoặc nhiều khoảng trắng, tùy thuộc vào cột hiện tại và kích thước tab đã cho. Vị trí tab xảy ra mọi ký tự TabSize (mặc định là 8, đưa ra các vị trí tab tại các cột 0, 8, 16, v.v.). Để mở rộng chuỗi, cột hiện tại được đặt thành 0 và chuỗi được kiểm tra ký tự theo ký tự. Nếu ký tự là một tab (

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
88), một hoặc nhiều ký tự không gian được chèn vào kết quả cho đến khi cột hiện tại bằng vị trí tab tiếp theo. . Bất kỳ ký tự nào khác được sao chép không thay đổi và cột hiện tại được tăng lên bởi một nhân vật bất kể nhân vật được biểu diễn như thế nào khi được in.

somestring.strip()
0

________ 657 ________ 692 (phụ [, bắt đầu [, kết thúc]])(sub[, start[, end]])

Trả về chỉ số thấp nhất trong chuỗi nơi tìm thấy phụ phụ trong phần

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
93. Đối số tùy chọn bắt đầu và kết thúc được hiểu là trong ký hiệu lát cắt. Trả lại
somestring.strip()
41 nếu không tìm thấy phụ.

Ghi chú

Phương pháp

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
95 chỉ nên được sử dụng nếu bạn cần biết vị trí của phụ. Để kiểm tra xem Sub có phải là chất nền hay không, hãy sử dụng toán tử
str(somestring, 'UTF8')
97:

somestring.strip()
1

________ 657 ________ 698 (*args, ** kwargs) ¶(*args, **kwargs)

Thực hiện thao tác định dạng chuỗi. Chuỗi mà phương pháp này được gọi là có thể chứa văn bản theo nghĩa đen hoặc các trường thay thế được phân tách bằng niềng răng

str(somestring, 'UTF8')
49. Mỗi trường thay thế chứa chỉ số số của đối số vị trí hoặc tên của đối số từ khóa. Trả về một bản sao của chuỗi trong đó mỗi trường thay thế được thay thế bằng giá trị chuỗi của đối số tương ứng.

somestring.strip()
2

Xem Cú pháp Chuỗi định dạng để biết mô tả về các tùy chọn định dạng khác nhau có thể được chỉ định trong chuỗi định dạng.Format String Syntax for a description of the various formatting options that can be specified in format strings.

Ghi chú

Phương pháp

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
95 chỉ nên được sử dụng nếu bạn cần biết vị trí của phụ. Để kiểm tra xem Sub có phải là chất nền hay không, hãy sử dụng toán tử
str(somestring, 'UTF8')
97:

________ 657 ________ 698 (*args, ** kwargs) ¶When formatting a number with the

from string import strip
64 type, the function sets temporarily the
def bit_count(self):
    return bin(self).count("1")
06 locale to the
def bit_count(self):
    return bin(self).count("1")
07 locale in some cases.

Thực hiện thao tác định dạng chuỗi. Chuỗi mà phương pháp này được gọi là có thể chứa văn bản theo nghĩa đen hoặc các trường thay thế được phân tách bằng niềng răng
str(somestring, 'UTF8')
49. Mỗi trường thay thế chứa chỉ số số của đối số vị trí hoặc tên của đối số từ khóa. Trả về một bản sao của chuỗi trong đó mỗi trường thay thế được thay thế bằng giá trị chuỗi của đối số tương ứng.(mapping)

Xem Cú pháp Chuỗi định dạng để biết mô tả về các tùy chọn định dạng khác nhau có thể được chỉ định trong chuỗi định dạng.

somestring.strip()
3

Định dạng một số (

somestring.strip()
00,
somestring.strip()
01,
somestring.strip()
02,
somestring.strip()
08 và các lớp con) với loại
from string import strip
64 (Xh:
def bit_count(self):
    return bin(self).count("1")
05) hoặc dài hơn 1 byte và địa phương
def bit_count(self):
    return bin(self).count("1")
07 khác với địa phương
def bit_count(self):
    return bin(self).count("1")
06. Thay đổi tạm thời này ảnh hưởng đến các chủ đề khác.

Đã thay đổi trong phiên bản 3.7: Khi định dạng một số với loại
from string import strip
64, hàm đặt tạm thời locale
def bit_count(self):
    return bin(self).count("1")
06 thành locle
def bit_count(self):
    return bin(self).count("1")
07 trong một số trường hợp.(sub[, start[, end]])

________ 657 ________ 717 (ánh xạ) ¶

________ 657 ________ 727 ()()

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các ký tự trong chuỗi là chữ và số và có ít nhất một ký tự,
str(somestring, 'UTF8')
37 nếu không. Một ký tự
def bit_count(self):
    return bin(self).count("1")
30 là chữ và số nếu một trong những lợi nhuận sau đây
str(somestring, 'UTF8')
55:
def bit_count(self):
    return bin(self).count("1")
32,
def bit_count(self):
    return bin(self).count("1")
33,
def bit_count(self):
    return bin(self).count("1")
34 hoặc
def bit_count(self):
    return bin(self).count("1")
35.

________ 657 ________ 737 ()()

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các ký tự trong chuỗi là bảng chữ cái và có ít nhất một ký tự,
str(somestring, 'UTF8')
37 khác. Các ký tự bảng chữ cái là những ký tự được xác định trong cơ sở dữ liệu ký tự Unicode là chữ cái chữ, tức là, những ký tự có thuộc tính danh mục chung là một trong những LM LM, LT LT, Lưu ý rằng điều này khác với thuộc tính bảng chữ cái của người Viking được xác định trong tiêu chuẩn Unicode.

________ 657 ________ 741 ()()

Trả về

str(somestring, 'UTF8')
55 Nếu chuỗi trống hoặc tất cả các ký tự trong chuỗi là ASCII,
str(somestring, 'UTF8')
37 khác. Các ký tự ASCII có các điểm mã trong phạm vi U+0000-U+007F.

Mới trong phiên bản 3.7.

________ 657 ________ 745 ()()

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các ký tự trong chuỗi là các ký tự thập phân và có ít nhất một ký tự,
str(somestring, 'UTF8')
37 nếu không. Các ký tự thập phân là các ký tự có thể được sử dụng để hình thành số trong cơ sở 10, ví dụ: U+0660, chữ số tiếng Ả Rập không. Chính thức là một ký tự thập phân là một nhân vật trong danh mục chung của Unicode.

________ 657 ________ 749 ()()

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các ký tự trong chuỗi là các chữ số và có ít nhất một ký tự,
str(somestring, 'UTF8')
37 khác. Các chữ số bao gồm các ký tự thập phân và các chữ số cần xử lý đặc biệt, chẳng hạn như các chữ số siêu tương thích. Điều này bao gồm các chữ số không thể được sử dụng để hình thành số trong cơ sở 10, như số Kharosthi. Chính thức, một chữ số là một ký tự có giá trị thuộc tính numeric_type = Digit hoặc numeric_type = thập phân.

________ 657 ________ 753 ()()

Trả về

str(somestring, 'UTF8')
55 Nếu chuỗi là một định danh hợp lệ theo định nghĩa ngôn ngữ, định danh phần và từ khóa.Identifiers and keywords.

Gọi

def bit_count(self):
    return bin(self).count("1")
55 để kiểm tra xem Chuỗi
def bit_count(self):
    return bin(self).count("1")
56 có phải là mã định danh dành riêng hay không, chẳng hạn như
def bit_count(self):
    return bin(self).count("1")
57 và
def bit_count(self):
    return bin(self).count("1")
58.

Example:

somestring.strip()
4

________ 657 ________ 760 ()()

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các ký tự vỏ 4 trong chuỗi là chữ thường và có ít nhất một ký tự vỏ,
str(somestring, 'UTF8')
37 nếu không.

________ 657 ________ 764 ()()

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các ký tự trong chuỗi là các ký tự số và có ít nhất một ký tự,
str(somestring, 'UTF8')
37 nếu không. Các ký tự số bao gồm các ký tự chữ số và tất cả các ký tự có thuộc tính giá trị số Unicode, ví dụ: U+2155, phân số thô một phần năm. Chính thức, các ký tự số là các ký tự có giá trị thuộc tính numeric_type = Digit, numeric_type = decimal hoặc numeric_type = numeric.

________ 657 ________ 768 ()()

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các ký tự trong chuỗi có thể in hoặc chuỗi trống,
str(somestring, 'UTF8')
37 nếu không. Các ký tự không thể in là những ký tự được xác định trong cơ sở dữ liệu ký tự Unicode là một phần khác hoặc phân tách khác, ngoại trừ không gian ASCII (0x20) được coi là có thể in. .

________ 657 ________ 775 ()()

Trả về

str(somestring, 'UTF8')
55 Nếu chỉ có các ký tự khoảng trắng trong chuỗi và có ít nhất một ký tự,
str(somestring, 'UTF8')
37 nếu không.

Một ký tự là khoảng trắng nếu trong cơ sở dữ liệu ký tự Unicode (xem

def bit_count(self):
    return bin(self).count("1")
78), loại chung của nó là
def bit_count(self):
    return bin(self).count("1")
79 (Dấu tách, không gian) hoặc lớp hai chiều của nó là một trong
def bit_count(self):
    return bin(self).count("1")
80,
def bit_count(self):
    return bin(self).count("1")
81 hoặc
def bit_count(self):
    return bin(self).count("1")
82.

________ 657 ________ 784 ()()

Trả về

str(somestring, 'UTF8')
55 Nếu chuỗi là một chuỗi tiêu chuẩn và có ít nhất một ký tự, ví dụ: các ký tự chữ hoa chỉ có thể theo dõi các ký tự chưa được ghi và các ký tự chữ thường chỉ các ký tự được đặt. Trả lại
str(somestring, 'UTF8')
37 nếu không.

________ 657 ________ 788 ()()

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các ký tự vỏ 4 trong chuỗi là chữ hoa và có ít nhất một ký tự vỏ,
str(somestring, 'UTF8')
37 nếu không.

somestring.strip()
5

________ 657 ________ 792 (có thể lặp lại) ¶(iterable)

Trả về một chuỗi là sự kết hợp của các chuỗi trong Itable. A

str(somestring, 'UTF8')
87 sẽ được nâng lên nếu có bất kỳ giá trị không chuỗi nào trong ITable, bao gồm các đối tượng
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42. Phân tách giữa các phần tử là chuỗi cung cấp phương pháp này.

________ 657 ________ 796 (chiều rộng [, fillchar]) ¶(width[, fillchar])

Trả về chuỗi bên trái chính đáng trong một chuỗi chiều rộng. Đệm được thực hiện bằng cách sử dụng fillchar được chỉ định (mặc định là không gian ASCII). Chuỗi ban đầu được trả về nếu chiều rộng nhỏ hơn hoặc bằng

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
32.

________ 657 ________ 799 ()()

Trả về một bản sao của chuỗi với tất cả các ký tự vỏ 4 được chuyển đổi thành chữ thường.

Thuật toán hạ thấp được sử dụng được mô tả trong Phần 3.13 của tiêu chuẩn Unicode.

________ 657 ________ 801 ([chars]) ¶([chars])

Trả về một bản sao của chuỗi với các ký tự hàng đầu bị xóa. Đối số ký tự là một chuỗi chỉ định tập hợp các ký tự sẽ được xóa. Nếu bị bỏ qua hoặc

str(somestring, 'UTF8')
30, đối số ký tự mặc định sẽ loại bỏ khoảng trắng. Đối số chars không phải là tiền tố; Thay vào đó, tất cả các kết hợp các giá trị của nó đều bị tước:

somestring.strip()
6

Xem

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
03 để biết phương thức sẽ xóa một chuỗi tiền tố duy nhất thay vì tất cả một tập hợp các ký tự. Ví dụ:

somestring.strip()
7

tĩnh ________ 657 ________ 805 (x [, y [, z]]) ¶(x[, y[, z]])

Phương pháp tĩnh này trả về một bảng dịch có thể sử dụng cho

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
06.

Nếu chỉ có một đối số, thì đó phải là một bản đồ từ điển unicode (số nguyên) hoặc ký tự (chuỗi có độ dài 1) đến các thứ tự Unicode, chuỗi (có độ dài tùy ý) hoặc

str(somestring, 'UTF8')
30. Các phím nhân vật sau đó sẽ được chuyển đổi thành các lệnh.

Nếu có hai đối số, chúng phải là các chuỗi có độ dài bằng nhau và trong từ điển kết quả, mỗi ký tự trong X sẽ được ánh xạ tới ký tự ở cùng một vị trí trong y. Nếu có một đối số thứ ba, nó phải là một chuỗi, có các ký tự sẽ được ánh xạ tới

str(somestring, 'UTF8')
30 trong kết quả.

________ 657 ________ 810 (tháng 9) ¶(sep)

Chia chuỗi ở lần xuất hiện đầu tiên của SEP và trả về 3-tuple chứa phần trước dấu phân cách, chính dấu phân cách và phần sau khi phân tách. Nếu không tìm thấy dấu phân cách, hãy trả về 3-tuple chứa chính chuỗi, theo sau là hai chuỗi trống.

________ 657 ________ 812 (tiền tố, /) ¶(prefix, /)

Nếu chuỗi bắt đầu với chuỗi tiền tố, hãy trả về

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13. Nếu không, hãy trả về một bản sao của chuỗi gốc:

somestring.strip()
8

Mới trong phiên bản 3.9.

________ 657 ________ 815 (hậu tố, /) ¶(suffix, /)

Nếu chuỗi kết thúc bằng chuỗi hậu tố và hậu tố đó không trống, hãy trả về

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
16. Nếu không, hãy trả về một bản sao của chuỗi gốc:

somestring.strip()
9

Mới trong phiên bản 3.9.

________ 657 ________ 815 (hậu tố, /) ¶(old, new[, count])

Nếu chuỗi kết thúc bằng chuỗi hậu tố và hậu tố đó không trống, hãy trả về

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
16. Nếu không, hãy trả về một bản sao của chuỗi gốc:

________ 657 ________ 818 (cũ, mới [, đếm]) ¶(sub[, start[, end]])

Trả về một bản sao của chuỗi với tất cả các lần xuất hiện của phần phụ cũ được thay thế bằng mới. Nếu số lượng đối số tùy chọn được đưa ra, chỉ có các lần xuất hiện đầu tiên được thay thế.

________ 657 ________ 820 (phụ [, bắt đầu [, kết thúc]]) ¶(sub[, start[, end]])

Trả về chỉ số cao nhất trong chuỗi nơi tìm thấy phụ phụ, do đó phụ được chứa trong

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
93. Đối số tùy chọn bắt đầu và kết thúc được hiểu là trong ký hiệu lát cắt. Trả lại
somestring.strip()
41 khi thất bại.

________ 657 ________ 824 (phụ [, bắt đầu [, kết thúc]])(width[, fillchar])

Giống như

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
25 nhưng tăng
somestring.strip()
77 khi không tìm thấy phụ con.

________ 657 ________ 828 (chiều rộng [, fillchar]) ¶(sep)

Trả về chuỗi đúng chính đáng trong một chuỗi chiều rộng chiều dài. Đệm được thực hiện bằng cách sử dụng fillchar được chỉ định (mặc định là không gian ASCII). Chuỗi ban đầu được trả về nếu chiều rộng nhỏ hơn hoặc bằng

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
32.

________ 657 ________ 831 (tháng 9) ¶(sep=None, maxsplit=- 1)

Chia chuỗi ở lần xuất hiện cuối cùng của SEP và trả về 3-tuple chứa phần trước dấu phân cách, chính dấu phân cách và phần sau khi phân tách. Nếu không tìm thấy dấu phân cách, hãy trả về 3-Tuple chứa hai chuỗi trống, theo sau là chuỗi.

________ 657 ________ 833 (sep = none, maxsplit =- 1) ¶([chars])

Trả về một danh sách các từ trong chuỗi, sử dụng SEP làm chuỗi DELIMITER. Nếu MAXSplit được đưa ra, tại hầu hết các phân tách MaxSplit được thực hiện, những cái ngoài cùng bên phải. Nếu SEP không được chỉ định hoặc

str(somestring, 'UTF8')
30, bất kỳ chuỗi khoảng trắng nào cũng là một dấu phân cách. Ngoại trừ việc chia tách từ bên phải,
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
35 hoạt động như
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
36 được mô tả chi tiết dưới đây.

from string import strip
0

________ 657 ________ 838 ([chars]) ¶

from string import strip
1

Trả về một bản sao của chuỗi với các ký tự dấu vết bị xóa. Đối số ký tự là một chuỗi chỉ định tập hợp các ký tự sẽ được xóa. Nếu bị bỏ qua hoặc
str(somestring, 'UTF8')
30, đối số ký tự mặc định sẽ loại bỏ khoảng trắng. Đối số chars không phải là một hậu tố; Thay vào đó, tất cả các kết hợp các giá trị của nó đều bị tước:(sep=None, maxsplit=- 1)

Xem

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
40 để biết phương thức sẽ loại bỏ một chuỗi hậu tố duy nhất thay vì tất cả một bộ ký tự. Ví dụ:

________ 657 ________ 842 (sep = none, maxsplit =- 1) ¶

Ví dụ:

from string import strip
2

Nếu SEP không được chỉ định hoặc là

str(somestring, 'UTF8')
30, một thuật toán phân tách khác nhau được áp dụng: chạy khoảng trắng liên tiếp được coi là một dấu phân cách duy nhất và kết quả sẽ không chứa các chuỗi trống ở đầu hoặc kết thúc nếu chuỗi có khoảng trắng dẫn đầu hoặc kéo dài. Do đó, việc phân tách một chuỗi trống hoặc một chuỗi bao gồm chỉ khoảng trắng với một dấu phân cách
str(somestring, 'UTF8')
30 trả về
str(somestring, 'UTF8')
48.

Ví dụ:

from string import strip
3

________ 657 ________ 854 (Keepends = false)(keepends=False)

Trả về một danh sách các dòng trong chuỗi, phá vỡ các ranh giới dòng. Phá vỡ dòng không được bao gồm trong danh sách kết quả trừ khi Keepends được đưa ra và đúng.

Phương pháp này phân chia trên các ranh giới dòng sau. Cụ thể, các ranh giới là một siêu dòng của Newlines phổ quát.universal newlines.

Đại diện

Sự mô tả

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
89

Line Feed

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
90

Vận chuyển trở lại

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
57

Vận chuyển trở lại + nguồn cấp dữ liệu dòng

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
58 hoặc
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
59

Tabline

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
60 hoặc
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
61

Thức ăn dạng

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
62

Bộ phân cách tập tin

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
63

Phân tách nhóm

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
64

Ghi điểm phân tách

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
65

Dòng tiếp theo (Mã điều khiển C1)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
66

Dòng phân tách

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
67

Phân tách đoạn văn

Đã thay đổi trong phiên bản 3.2:

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
58 và
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
60 được thêm vào danh sách các ranh giới dòng.
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
58 and
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
60 added to list of line boundaries.

Ví dụ:

from string import strip
4

Không giống như

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
36 khi một chuỗi phân cách được đưa ra, phương thức này trả về một danh sách trống cho chuỗi trống và ngắt dòng đầu cuối không dẫn đến một dòng bổ sung:

from string import strip
5

Để so sánh,

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
71 đưa ra:

from string import strip
6

________ 657 ________ 873 (tiền tố [, bắt đầu [, kết thúc]])(prefix[, start[, end]])

Trả về

str(somestring, 'UTF8')
55 Nếu chuỗi bắt đầu bằng tiền tố, nếu không thì trả về
str(somestring, 'UTF8')
37. Tiền tố cũng có thể là một bộ tiền tố để tìm kiếm. Với bắt đầu tùy chọn, chuỗi kiểm tra bắt đầu ở vị trí đó. Với kết thúc tùy chọn, dừng so sánh chuỗi ở vị trí đó.

________ 657 ________ 877 ([chars]) ¶([chars])

Trả về một bản sao của chuỗi với các ký tự dẫn đầu và dấu vết đã bị xóa. Đối số ký tự là một chuỗi chỉ định tập hợp các ký tự sẽ được xóa. Nếu bị bỏ qua hoặc

str(somestring, 'UTF8')
30, đối số ký tự mặc định sẽ loại bỏ khoảng trắng. Đối số chars không phải là tiền tố hoặc hậu tố; Thay vào đó, tất cả các kết hợp các giá trị của nó đều bị tước:

from string import strip
7

Các giá trị đối số Chars dẫn đầu ngoài và kéo dài được tước khỏi chuỗi. Các ký tự được xóa khỏi đầu dẫn cho đến khi đạt được một ký tự chuỗi không được chứa trong tập hợp các ký tự trong ký tự. Một hành động tương tự diễn ra trên đầu cuối. Ví dụ:

from string import strip
8

________ 657 ________ 880 ()()

Trả về một bản sao của chuỗi với các ký tự chữ hoa được chuyển đổi sang chữ thường và ngược lại. Lưu ý rằng không nhất thiết phải đúng là

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
81.

________ 657 ________ 883 ()()

Trả về một phiên bản tiêu chuẩn của chuỗi trong đó các từ bắt đầu bằng ký tự chữ hoa và các ký tự còn lại là chữ thường.

Ví dụ:

from string import strip
9

Thuật toán sử dụng một định nghĩa độc lập ngôn ngữ đơn giản của một từ là các nhóm chữ cái liên tiếp. Định nghĩa hoạt động trong nhiều bối cảnh nhưng nó có nghĩa là các dấu nháy đơn trong các cơn co thắt và sở hữu hình thành ranh giới từ, có thể không phải là kết quả mong muốn:

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
0

Hàm

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
84 không có vấn đề này, vì nó chỉ chia các từ trên khoảng trắng.

Ngoài ra, một cách giải quyết cho dấu nháy đơn có thể được xây dựng bằng cách sử dụng các biểu thức thông thường:

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
1

________ 657 ________ 886 (Bảng)(table)

Trả về một bản sao của chuỗi trong đó mỗi ký tự đã được ánh xạ qua bảng dịch đã cho. Bảng phải là một đối tượng thực hiện lập chỉ mục thông qua

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
87, thường là ánh xạ hoặc trình tự. Khi được lập chỉ mục bởi một thứ tự unicode (một số nguyên), đối tượng bảng có thể thực hiện bất kỳ điều nào sau đây: trả về một thứ tự unicode hoặc một chuỗi, để ánh xạ ký tự cho một hoặc nhiều ký tự khác; Trả về
str(somestring, 'UTF8')
30, để xóa ký tự khỏi chuỗi trả về; hoặc tăng ngoại lệ
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
89, để ánh xạ nhân vật đến chính nó.mapping or sequence. When indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode ordinal or a string, to map the character to one or more other characters; return
str(somestring, 'UTF8')
30, to delete the character from the return string; or raise a
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
89 exception, to map the character to itself.

Bạn có thể sử dụng

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
90 để tạo bản đồ dịch từ ánh xạ ký tự sang ký tự ở các định dạng khác nhau.

Xem thêm Mô -đun

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
91 để biết cách tiếp cận linh hoạt hơn đối với ánh xạ ký tự tùy chỉnh.

________ 657 ________ 893 ()()

Trả về một bản sao của chuỗi với tất cả các ký tự vỏ 4 được chuyển đổi thành chữ hoa. Lưu ý rằng

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
94 có thể là
str(somestring, 'UTF8')
37 nếu
def bit_count(self):
    return bin(self).count("1")
56 chứa các ký tự chưa được xử lý hoặc nếu loại Unicode của (các) ký tự kết quả không phải là LU LU (chữ cái, chữ hoa), nhưng ví dụ: LT LT (Thư, Titlecase).

Thuật toán từ trên được sử dụng được mô tả trong Phần 3.13 của tiêu chuẩn Unicode.

________ 657 ________ 898 (chiều rộng) ¶(width)

Trả về một bản sao của chuỗi bên trái chứa đầy ASCII

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
99 chữ số để tạo một chuỗi chiều rộng. Một tiền tố dấu hiệu hàng đầu (________ 900/________ 901) được xử lý bằng cách chèn đệm sau ký tự dấu hiệu chứ không phải trước. Chuỗi ban đầu được trả về nếu chiều rộng nhỏ hơn hoặc bằng
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
32.

Ví dụ:

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
2

________ Định dạng chuỗi theo phong cách 655

Ghi chú

Các hoạt động định dạng được mô tả ở đây thể hiện một loạt các kỳ quặc dẫn đến một số lỗi phổ biến (chẳng hạn như không hiển thị chính xác các bộ dữ liệu và từ điển). Sử dụng các chuỗi chữ được định dạng mới hơn, giao diện

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
54 hoặc chuỗi mẫu có thể giúp tránh các lỗi này. Mỗi lựa chọn thay thế này cung cấp sự đánh đổi và lợi ích của riêng họ về sự đơn giản, tính linh hoạt và/hoặc khả năng mở rộng.formatted string literals, the
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
54 interface, or template strings may help avoid these errors. Each of these alternatives provides their own trade-offs and benefits of simplicity, flexibility, and/or extensibility.

Các đối tượng chuỗi có một thao tác tích hợp duy nhất: toán tử

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
05 (modulo). Điều này còn được gọi là toán tử định dạng chuỗi hoặc nội suy. Cho
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
06 (trong đó định dạng là một chuỗi),
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
05 Thông số kỹ thuật chuyển đổi trong định dạng được thay thế bằng 0 hoặc nhiều phần tử của các giá trị. Hiệu ứng tương tự như sử dụng
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
08 trong ngôn ngữ C.

Nếu định dạng yêu cầu một đối số duy nhất, các giá trị có thể là một đối tượng không phải là một đối tượng. 5 Nếu không, các giá trị phải là một tuple với chính xác số lượng mục được chỉ định bởi chuỗi định dạng hoặc một đối tượng ánh xạ duy nhất (ví dụ: từ điển).

Trình xác định chuyển đổi chứa hai hoặc nhiều ký tự và có các thành phần sau, phải xảy ra theo thứ tự này:

  1. Ký tự

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    09, đánh dấu sự khởi đầu của trình xác định.

  2. Khóa ánh xạ (tùy chọn), bao gồm một chuỗi các ký tự dấu ngoặc đơn (ví dụ:

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    10).

  3. Cờ chuyển đổi (tùy chọn), ảnh hưởng đến kết quả của một số loại chuyển đổi.

  4. Chiều rộng trường tối thiểu (tùy chọn). Nếu được chỉ định là

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    11 (dấu hoa thị), chiều rộng thực tế được đọc từ phần tử tiếp theo của bộ tple trong các giá trị và đối tượng để chuyển đổi xuất hiện sau chiều rộng trường tối thiểu và độ chính xác tùy chọn.

  5. Độ chính xác (tùy chọn), được đưa ra dưới dạng

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    12 (dấu chấm) theo sau là độ chính xác. Nếu được chỉ định là
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    11 (dấu hoa thị), độ chính xác thực tế được đọc từ phần tử tiếp theo của tuple trong các giá trị và giá trị để chuyển đổi xuất hiện sau độ chính xác.

  6. Công cụ sửa đổi độ dài (tùy chọn).

  7. Loại chuyển đổi.

Khi đối số đúng là từ điển (hoặc loại ánh xạ khác), thì các định dạng trong chuỗi phải bao gồm khóa ánh xạ dấu ngoặc đơn vào từ điển đó được chèn ngay sau ký tự

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
09. Khóa ánh xạ chọn giá trị được định dạng từ ánh xạ. Ví dụ:

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
3

Trong trường hợp này, không có nhà xác định

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
19 có thể xảy ra ở định dạng (vì chúng yêu cầu danh sách tham số tuần tự).

Các ký tự cờ chuyển đổi là:

Lá cờ

Nghĩa

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
16

Chuyển đổi giá trị sẽ sử dụng hình thức thay thế trên mạng (trong đó được xác định bên dưới).

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
99

Việc chuyển đổi sẽ được đệm bằng 0 cho các giá trị số.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
01

Giá trị được chuyển đổi được điều chỉnh trái (ghi đè chuyển đổi

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
99 nếu cả hai được đưa ra).

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
20

.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
00

Một ký tự dấu hiệu (

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
00 hoặc
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
01) sẽ đi trước chuyển đổi (ghi đè một lá cờ không gian trên mạng).

Một công cụ sửa đổi độ dài (

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
24,
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
25 hoặc
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
26) có thể xuất hiện, nhưng bị bỏ qua vì nó không cần thiết cho Python - vì vậy ví dụ:
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
27 giống hệt với
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
28.

Các loại chuyển đổi là:

Chuyển đổi

Nghĩa

Chuyển đổi giá trị sẽ sử dụng hình thức thay thế trên mạng (trong đó được xác định bên dưới).

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
29

Việc chuyển đổi sẽ được đệm bằng 0 cho các giá trị số.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
30

Việc chuyển đổi sẽ được đệm bằng 0 cho các giá trị số.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
31

Giá trị được chuyển đổi được điều chỉnh trái (ghi đè chuyển đổi

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
99 nếu cả hai được đưa ra).

(1)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
32

.

(6)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
34

Một ký tự dấu hiệu (

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
00 hoặc
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
01) sẽ đi trước chuyển đổi (ghi đè một lá cờ không gian trên mạng).

(2)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
35

Một công cụ sửa đổi độ dài (

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
24,
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
25 hoặc
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
26) có thể xuất hiện, nhưng bị bỏ qua vì nó không cần thiết cho Python - vì vậy ví dụ:
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
27 giống hệt với
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
28.

(2)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
36

Các loại chuyển đổi là:

(3)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
37

Chuyển đổi

(3)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
38

Ghi chú

(3)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
39

Ghi chú

(3)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
40

Đã ký số nguyên thập phân.

(4)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
41

Đã ký giá trị bát phân.

(4)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
42

Loại lỗi thời - Nó giống hệt với

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
29.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
43

Đã ký tên thập lục phân (chữ thường).

(5)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
45

Đã ký tên thập lục phân (chữ hoa).

(5)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
47

Định dạng theo cấp số mũ (chữ thường).

(5)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
09

Định dạng số mũ điểm nổi (chữ hoa).

Notes:

  1. Định dạng số thập phân điểm nổi.

  2. Định dạng điểm nổi. Sử dụng định dạng theo cấp số nhân nếu số mũ nhỏ hơn -4 hoặc không nhỏ hơn độ chính xác, định dạng thập phân nếu không.

  3. Hình thức thay thế làm cho kết quả luôn chứa một điểm thập phân, ngay cả khi không có chữ số nào tuân theo nó.

    Độ chính xác xác định số lượng chữ số sau điểm thập phân và mặc định là 6.

  4. Hình thức thay thế gây ra kết quả luôn chứa một điểm thập phân và các số 0 không được loại bỏ như chúng sẽ có.

    Độ chính xác xác định số lượng các chữ số đáng kể trước và sau điểm thập phân và mặc định là 6.

  5. Nếu độ chính xác là

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    56, đầu ra bị cắt giảm thành
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    56 ký tự.

  6. Xem PEP 237.PEP 237.

Vì các chuỗi Python có độ dài rõ ràng, các chuyển đổi

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
58 không cho rằng
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
59 là kết thúc của chuỗi.

Đã thay đổi trong phiên bản 3.1:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
60 Chuyển đổi cho các số có giá trị tuyệt đối trên 1E50 không còn được thay thế bằng các chuyển đổi
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
61.
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
60 conversions for numbers whose absolute value is over 1e50 are no longer replaced by
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
61 conversions.

Các loại trình tự nhị phân - >>> n = -37 >>> bin(n) '-0b100101' >>> n.bit_length() 6 42, >>> n = -37 >>> bin(n) '-0b100101' >>> n.bit_length() 6 43, ________ 964¶

Các loại tích hợp cốt lõi để thao tác dữ liệu nhị phân là

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42 và
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
43. Chúng được hỗ trợ bởi
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
64 sử dụng giao thức bộ đệm để truy cập bộ nhớ của các đối tượng nhị phân khác mà không cần tạo bản sao.buffer protocol to access the memory of other binary objects without needing to make a copy.

Mô-đun

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
68 hỗ trợ lưu trữ hiệu quả các loại dữ liệu cơ bản như số nguyên 32 bit và giá trị nổi có độ chính xác kép của IEEE754.

Đối tượng byte

Đối tượng byte là các chuỗi bất biến của các byte đơn. Do nhiều giao thức nhị phân chính dựa trên mã hóa văn bản ASCII, các đối tượng byte cung cấp một số phương thức chỉ hợp lệ khi làm việc với dữ liệu tương thích ASCII và liên quan chặt chẽ đến các đối tượng chuỗi theo nhiều cách khác.

Lớp ________ 969 ([Nguồn [, mã hóa [, lỗi]]])([source[, encoding[, errors]]])

Đầu tiên, cú pháp cho các chữ cái byte phần lớn giống như đối với các chữ viết, ngoại trừ tiền tố

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
70 được thêm vào:

  • Trích dẫn đơn:

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    71

  • Báo giá kép:

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    72

  • Triple Trích dẫn:

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    73,
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    74

Chỉ các ký tự ASCII được phép trong các chữ cái byte (bất kể mã hóa mã nguồn được khai báo). Bất kỳ giá trị nhị phân nào trên 127 phải được nhập vào các chữ cái bằng cách sử dụng trình tự thoát thích hợp.

Như với các chữ viết, các chữ cái byte cũng có thể sử dụng tiền tố

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
86 để vô hiệu hóa việc xử lý các chuỗi thoát. Xem chuỗi và byte theo nghĩa đen để biết thêm về các dạng byte khác nhau theo nghĩa đen, bao gồm các chuỗi thoát được hỗ trợ.String and Bytes literals for more about the various forms of bytes literal, including supported escape sequences.

Mặc dù các byte theo nghĩa đen và biểu diễn dựa trên văn bản ASCII, các đối tượng byte thực sự hoạt động như các chuỗi số nguyên bất biến, với mỗi giá trị trong chuỗi bị hạn chế sao cho

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
76 (cố gắng vi phạm giới hạn này sẽ kích hoạt
somestring.strip()
77). Điều này được thực hiện có chủ ý để nhấn mạnh rằng trong khi nhiều định dạng nhị phân bao gồm các yếu tố dựa trên ASCII và có thể được thao tác một cách hữu ích với một số thuật toán định hướng văn bản ASCII tương thích thường sẽ dẫn đến tham nhũng dữ liệu).

Ngoài các biểu mẫu theo nghĩa đen, các đối tượng byte có thể được tạo theo một số cách khác:

  • Một đối tượng byte chứa không có độ dài được chỉ định:

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    78

  • Từ một số nguyên của số nguyên:

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    79

  • Sao chép dữ liệu nhị phân hiện có thông qua giao thức bộ đệm:

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    80

Cũng xem các byte tích hợp.bytes built-in.

Vì 2 chữ số thập lục phân tương ứng chính xác với một byte duy nhất, các số thập lục phân là một định dạng thường được sử dụng để mô tả dữ liệu nhị phân. Theo đó, loại byte có một phương thức lớp bổ sung để đọc dữ liệu ở định dạng đó:

ClassMethod ________ 326 (Chuỗi) ¶(string)

Phương thức lớp

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42 này trả về một đối tượng byte, giải mã đối tượng chuỗi đã cho. Chuỗi phải chứa hai chữ số thập lục phân trên byte, với khoảng trắng ASCII bị bỏ qua.

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
4

Đã thay đổi trong phiên bản 3.7:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
83 hiện bỏ qua tất cả khoảng trắng ASCII trong chuỗi, không chỉ không gian.
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
83 now skips all ASCII whitespace in the string, not just spaces.

Một hàm chuyển đổi ngược tồn tại để biến một đối tượng byte thành đại diện thập lục phân của nó.

________ 322 ([sep [, byte_per_sep]])([sep[, bytes_per_sep]])

Trả về một đối tượng chuỗi chứa hai chữ số thập lục phân cho mỗi byte trong trường hợp.

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
5

Nếu bạn muốn làm cho chuỗi Hex dễ đọc hơn, bạn có thể chỉ định một tham số SEP của một ký tự duy nhất để đưa vào đầu ra. Theo mặc định, dấu phân cách này sẽ được bao gồm giữa mỗi byte. Một tham số tùy chọn thứ hai byte_per_sep kiểm soát khoảng cách. Các giá trị dương tính vị trí phân tách từ bên phải, các giá trị âm từ bên trái.

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
6

Mới trong phiên bản 3.5.

Đã thay đổi trong phiên bản 3.8:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
85 hiện hỗ trợ các tham số SEP và byte_per_sep tùy chọn để chèn các phân tách giữa các byte trong đầu ra hex.
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
85 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Vì các đối tượng byte là chuỗi số nguyên (gần giống với một tuple), đối với đối tượng byte B,

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
86 sẽ là một số nguyên, trong khi
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87 sẽ là đối tượng byte có độ dài 1. (Điều này tương phản với các chuỗi văn bản, trong đó cả việc lập chỉ mục và cắt sẽ sẽ tạo ra một chuỗi độ dài 1)

Việc biểu diễn các đối tượng byte sử dụng định dạng theo nghĩa đen (

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
88) vì nó thường hữu ích hơn ví dụ:
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
89. Bạn luôn có thể chuyển đổi một đối tượng byte thành một danh sách các số nguyên sử dụng
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
90.

Đối tượng bytearray

Các đối tượng

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
43 là một đối tác có thể thay đổi đối với các đối tượng
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42.

Lớp ________ 993 ([Nguồn [, mã hóa [, lỗi]]])([source[, encoding[, errors]]])

Không có cú pháp theo nghĩa đen chuyên dụng cho các đối tượng bytearray, thay vào đó chúng luôn được tạo bằng cách gọi hàm tạo:

  • Tạo một trường hợp trống:

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    94

  • Tạo một thể hiện không đầy đủ với độ dài nhất định:

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    95

  • Từ một số nguyên của số nguyên:

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    96

  • Sao chép dữ liệu nhị phân hiện có thông qua giao thức bộ đệm:

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    97

Vì các đối tượng bytearray có thể thay đổi, chúng hỗ trợ các hoạt động chuỗi có thể thay đổi ngoài các hoạt động byte và bytearray phổ biến được mô tả trong các hoạt động byte và bytearray.mutable sequence operations in addition to the common bytes and bytearray operations described in Bytes and Bytearray Operations.

Cũng xem bytearray tích hợp.bytearray built-in.

Vì 2 chữ số thập lục phân tương ứng chính xác với một byte duy nhất, các số thập lục phân là một định dạng thường được sử dụng để mô tả dữ liệu nhị phân. Theo đó, loại bytearray có một phương thức lớp bổ sung để đọc dữ liệu ở định dạng đó:

ClassMethod ________ 326 (Chuỗi) ¶(string)

Phương thức lớp

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
43 này trả về đối tượng bytearray, giải mã đối tượng chuỗi đã cho. Chuỗi phải chứa hai chữ số thập lục phân trên byte, với khoảng trắng ASCII bị bỏ qua.

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
7

Đã thay đổi trong phiên bản 3.7:

str(somestring, 'UTF8')
000 Bây giờ bỏ qua tất cả khoảng trắng ASCII trong chuỗi, không chỉ không gian.
str(somestring, 'UTF8')
000 now skips all ASCII whitespace in the string, not just spaces.

Một hàm chuyển đổi ngược tồn tại để biến một đối tượng bytearray thành đại diện thập lục phân của nó.

________ 322 ([sep [, byte_per_sep]])([sep[, bytes_per_sep]])

Trả về một đối tượng chuỗi chứa hai chữ số thập lục phân cho mỗi byte trong trường hợp.

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
8

Mới trong phiên bản 3.5.

Đã thay đổi trong phiên bản 3.8: Tương tự như

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
85,
str(somestring, 'UTF8')
003 hiện hỗ trợ các tham số tùy chọn SEP và BYTES_PER_SEP để chèn các phân tách giữa các byte trong đầu ra hex.Similar to
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
85,
str(somestring, 'UTF8')
003 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Vì các đối tượng bytearray là chuỗi số nguyên (gần giống với danh sách), đối với đối tượng bytearray B,

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
86 sẽ là một số nguyên, trong khi
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87 sẽ là đối tượng bytearray có độ dài 1. (Điều này tương phản với các chuỗi văn bản, trong đó cả việc lập chỉ mục và cắt lát sẽ tạo ra một chuỗi độ dài 1)

Việc biểu diễn các đối tượng bytearray sử dụng định dạng theo nghĩa đen byte (

str(somestring, 'UTF8')
006) vì nó thường hữu ích hơn ví dụ:
str(somestring, 'UTF8')
007. Bạn luôn có thể chuyển đổi một đối tượng bytearray thành một danh sách các số nguyên sử dụng
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
90.

Byte và các hoạt động bytearray

Cả các đối tượng byte và bytearray đều hỗ trợ các hoạt động trình tự chung. Chúng tương tác không chỉ với các toán hạng cùng loại, mà với bất kỳ đối tượng giống như byte nào. Do tính linh hoạt này, chúng có thể được trộn tự do trong các hoạt động mà không gây ra lỗi. Tuy nhiên, loại trả lại của kết quả có thể phụ thuộc vào thứ tự của các toán hạng.common sequence operations. They interoperate not just with operands of the same type, but with any bytes-like object. Due to this flexibility, they can be freely mixed in operations without causing errors. However, the return type of the result may depend on the order of operands.

Ghi chú

Các phương pháp trên byte và các đối tượng bytearray don don chấp nhận các chuỗi là đối số của chúng, giống như các phương pháp trên các chuỗi don don chấp nhận byte như đối số của chúng. Ví dụ: bạn phải viết:

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
9

and:

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
0

Một số hoạt động byte và bytearray giả định việc sử dụng các định dạng nhị phân tương thích ASCII và do đó nên tránh khi làm việc với dữ liệu nhị phân tùy ý. Những hạn chế này được đề cập dưới đây.

Ghi chú

Các phương pháp trên byte và các đối tượng bytearray don don chấp nhận các chuỗi là đối số của chúng, giống như các phương pháp trên các chuỗi don don chấp nhận byte như đối số của chúng. Ví dụ: bạn phải viết:

Một số hoạt động byte và bytearray giả định việc sử dụng các định dạng nhị phân tương thích ASCII và do đó nên tránh khi làm việc với dữ liệu nhị phân tùy ý. Những hạn chế này được đề cập dưới đây.

Sử dụng các hoạt động dựa trên ASCII này để thao tác dữ liệu nhị phân không được lưu trữ ở định dạng dựa trên ASCII có thể dẫn đến tham nhũng dữ liệu.(sub[, start[, end]])
str(somestring, 'UTF8')
011
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
71(sub[, start[, end]])

Các phương pháp sau trên byte và các đối tượng bytearray có thể được sử dụng với dữ liệu nhị phân tùy ý.

________ 1009 ________ 671 (sub [, start [, end]])bytes-like object or an integer in the range 0 to 255.

Trả về số lần xuất hiện không chồng chéo của phụ Trại con trong phạm vi [bắt đầu, kết thúc]. Đối số tùy chọn bắt đầu và kết thúc được hiểu là trong ký hiệu lát cắt.Also accept an integer in the range 0 to 255 as the subsequence.

Phần tiếp theo để tìm kiếm có thể là bất kỳ đối tượng giống như byte hoặc một số nguyên trong phạm vi 0 đến 255.(prefix, /)
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
12(prefix, /)

Đã thay đổi trong phiên bản 3.3: Cũng chấp nhận một số nguyên trong phạm vi 0 đến 255 là phần sau.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
1

________ 1009 ________ 812 (tiền tố, /) umb ____ 1011 ________ 812 (tiền tố, /)bytes-like object.

Ghi chú

Các phương pháp trên byte và các đối tượng bytearray don don chấp nhận các chuỗi là đối số của chúng, giống như các phương pháp trên các chuỗi don don chấp nhận byte như đối số của chúng. Ví dụ: bạn phải viết:

Một số hoạt động byte và bytearray giả định việc sử dụng các định dạng nhị phân tương thích ASCII và do đó nên tránh khi làm việc với dữ liệu nhị phân tùy ý. Những hạn chế này được đề cập dưới đây.

Sử dụng các hoạt động dựa trên ASCII này để thao tác dữ liệu nhị phân không được lưu trữ ở định dạng dựa trên ASCII có thể dẫn đến tham nhũng dữ liệu.(suffix, /)
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
15(suffix, /)

Các phương pháp sau trên byte và các đối tượng bytearray có thể được sử dụng với dữ liệu nhị phân tùy ý.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
2

________ 1009 ________ 671 (sub [, start [, end]])bytes-like object.

Ghi chú

Các phương pháp trên byte và các đối tượng bytearray don don chấp nhận các chuỗi là đối số của chúng, giống như các phương pháp trên các chuỗi don don chấp nhận byte như đối số của chúng. Ví dụ: bạn phải viết:

Mới trong phiên bản 3.9.

________ 1009 ________ 1024 (mã hóa = 'UTF-8', lỗi = 'nghiêm ngặt')(encoding='utf-8', errors='strict')
str(somestring, 'UTF8')
011
str(somestring, 'UTF8')
024(encoding='utf-8', errors='strict')

Trả về một chuỗi được giải mã từ các byte đã cho. Mã hóa mặc định là

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
74. Lỗi có thể được đưa ra để đặt sơ đồ xử lý lỗi khác. Mặc định cho các lỗi là
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
75, có nghĩa là các lỗi mã hóa tăng
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
76. Các giá trị có thể khác là
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
77,
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
78 và bất kỳ tên nào khác được đăng ký qua
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
81, xem phần xử lý lỗi phần. Để biết danh sách các mã hóa có thể, hãy xem phần Mã hóa tiêu chuẩn.Error Handlers. For a list of possible encodings, see section Standard Encodings.

Theo mặc định, đối số lỗi không được kiểm tra các hiệu suất tốt nhất, nhưng chỉ được sử dụng ở lỗi giải mã đầu tiên. Kích hoạt chế độ phát triển Python hoặc sử dụng bản dựng gỡ lỗi để kiểm tra lỗi.Python Development Mode, or use a debug build to check errors.

Ghi chú

Chuyển đối số mã hóa cho

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
41 cho phép giải mã trực tiếp bất kỳ đối tượng giống như byte nào, mà không cần phải tạo một byte tạm thời hoặc đối tượng bytearray.bytes-like object directly, without needing to make a temporary bytes or bytearray object.

Đã thay đổi trong phiên bản 3.1: Đã thêm hỗ trợ cho các đối số từ khóa.Added support for keyword arguments.

Đã thay đổi trong phiên bản 3.9: Các lỗi hiện được kiểm tra ở chế độ phát triển và ở chế độ gỡ lỗi.The errors is now checked in development mode and in debug mode.

________ 1009 ________ 683 (Hậu tố [, bắt đầu [, kết thúc]])(suffix[, start[, end]])
str(somestring, 'UTF8')
011
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
83(suffix[, start[, end]])

Trả về

str(somestring, 'UTF8')
55 Nếu dữ liệu nhị phân kết thúc bằng hậu tố được chỉ định, nếu không, hãy trả về
str(somestring, 'UTF8')
37. Hậu tố cũng có thể là một bộ hậu tố để tìm kiếm. Với bắt đầu tùy chọn, kiểm tra bắt đầu ở vị trí đó. Với kết thúc tùy chọn, dừng so sánh ở vị trí đó.

Hậu tố (ES) để tìm kiếm có thể là bất kỳ đối tượng giống như byte nào.bytes-like object.

________ 1009 ________ 692 (sub [, start [, end]])(sub[, start[, end]])
str(somestring, 'UTF8')
011
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
92(sub[, start[, end]])

Trả về chỉ số thấp nhất trong dữ liệu nơi tìm thấy phụ phụ, do đó phụ được chứa trong lát

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
93. Đối số tùy chọn bắt đầu và kết thúc được hiểu là trong ký hiệu lát cắt. Trả lại
somestring.strip()
41 nếu không tìm thấy phụ.

Phần tiếp theo để tìm kiếm có thể là bất kỳ đối tượng giống như byte hoặc một số nguyên trong phạm vi 0 đến 255.bytes-like object or an integer in the range 0 to 255.

Ghi chú

Chuyển đối số mã hóa cho

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
41 cho phép giải mã trực tiếp bất kỳ đối tượng giống như byte nào, mà không cần phải tạo một byte tạm thời hoặc đối tượng bytearray.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
3

Đã thay đổi trong phiên bản 3.1: Đã thêm hỗ trợ cho các đối số từ khóa.Also accept an integer in the range 0 to 255 as the subsequence.

Đã thay đổi trong phiên bản 3.9: Các lỗi hiện được kiểm tra ở chế độ phát triển và ở chế độ gỡ lỗi.(sub[, start[, end]])
str(somestring, 'UTF8')
011
def bit_count(self):
    return bin(self).count("1")
23(sub[, start[, end]])

________ 1009 ________ 683 (Hậu tố [, bắt đầu [, kết thúc]])

Phần tiếp theo để tìm kiếm có thể là bất kỳ đối tượng giống như byte hoặc một số nguyên trong phạm vi 0 đến 255.bytes-like object or an integer in the range 0 to 255.

Đã thay đổi trong phiên bản 3.1: Đã thêm hỗ trợ cho các đối số từ khóa.Also accept an integer in the range 0 to 255 as the subsequence.

Đã thay đổi trong phiên bản 3.9: Các lỗi hiện được kiểm tra ở chế độ phát triển và ở chế độ gỡ lỗi.(iterable)
str(somestring, 'UTF8')
011
def bit_count(self):
    return bin(self).count("1")
92(iterable)

________ 1009 ________ 683 (Hậu tố [, bắt đầu [, kết thúc]])bytes-like objects, including

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
41 objects. The separator between elements is the contents of the bytes or bytearray object providing this method.

Trả về
str(somestring, 'UTF8')
55 Nếu dữ liệu nhị phân kết thúc bằng hậu tố được chỉ định, nếu không, hãy trả về
str(somestring, 'UTF8')
37. Hậu tố cũng có thể là một bộ hậu tố để tìm kiếm. Với bắt đầu tùy chọn, kiểm tra bắt đầu ở vị trí đó. Với kết thúc tùy chọn, dừng so sánh ở vị trí đó.(from, to)¶ static
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
05(from, to)

Hậu tố (ES) để tìm kiếm có thể là bất kỳ đối tượng giống như byte nào.bytes-like objects and have the same length.

________ 1009 ________ 692 (sub [, start [, end]])

Trả về chỉ số thấp nhất trong dữ liệu nơi tìm thấy phụ phụ, do đó phụ được chứa trong lát
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
93. Đối số tùy chọn bắt đầu và kết thúc được hiểu là trong ký hiệu lát cắt. Trả lại
somestring.strip()
41 nếu không tìm thấy phụ.(sep)
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
10(sep)

Phần tiếp theo để tìm kiếm có thể là bất kỳ đối tượng giống như byte hoặc một số nguyên trong phạm vi 0 đến 255.

Phương pháp

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
95 chỉ nên được sử dụng nếu bạn cần biết vị trí của phụ. Để kiểm tra xem Sub có phải là chất nền hay không, hãy sử dụng toán tử
str(somestring, 'UTF8')
97:bytes-like object.

Đã thay đổi trong phiên bản 3.3: Cũng chấp nhận một số nguyên trong phạm vi 0 đến 255 là phần sau.(old, new[, count])
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
18(old, new[, count])

________ 1009 ________ 723 (sub [, start [, end]])

Giống như

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
95, nhưng tăng
somestring.strip()
77 khi không tìm thấy sau đó.bytes-like object.

Ghi chú

Chuyển đối số mã hóa cho

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
41 cho phép giải mã trực tiếp bất kỳ đối tượng giống như byte nào, mà không cần phải tạo một byte tạm thời hoặc đối tượng bytearray.

Đã thay đổi trong phiên bản 3.1: Đã thêm hỗ trợ cho các đối số từ khóa.(sub[, start[, end]])
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
20(sub[, start[, end]])

Đã thay đổi trong phiên bản 3.9: Các lỗi hiện được kiểm tra ở chế độ phát triển và ở chế độ gỡ lỗi.

Phần tiếp theo để tìm kiếm có thể là bất kỳ đối tượng giống như byte hoặc một số nguyên trong phạm vi 0 đến 255.bytes-like object or an integer in the range 0 to 255.

Đã thay đổi trong phiên bản 3.3: Cũng chấp nhận một số nguyên trong phạm vi 0 đến 255 là phần sau.Also accept an integer in the range 0 to 255 as the subsequence.

________ 1009 ________ 824 (sub [, start [, end]])(sub[, start[, end]])
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
24(sub[, start[, end]])

Giống như

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
25 nhưng tăng
somestring.strip()
77 khi không tìm thấy phụ sau đó.

Phần tiếp theo để tìm kiếm có thể là bất kỳ đối tượng giống như byte hoặc một số nguyên trong phạm vi 0 đến 255.bytes-like object or an integer in the range 0 to 255.

Đã thay đổi trong phiên bản 3.3: Cũng chấp nhận một số nguyên trong phạm vi 0 đến 255 là phần sau.Also accept an integer in the range 0 to 255 as the subsequence.

________ 1009 ________ 831 (tháng 9) ____ ____ 1011 ________ 831 (tháng 9) ¶(sep)
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
31(sep)

Chia trình tự ở lần xuất hiện cuối cùng của SEP và trả về 3-tuple chứa phần trước dấu phân cách, chính bộ phân cách hoặc bản sao bytearray của nó và phần sau khi phân tách. Nếu không tìm thấy dấu phân cách, hãy trả về 3-tuple chứa hai byte trống hoặc các đối tượng bytearray, theo sau là một bản sao của chuỗi gốc.

Bộ phân cách để tìm kiếm có thể là bất kỳ đối tượng giống như byte.bytes-like object.

________ 1009 ________ 873 (tiền tố [, bắt đầu [, kết thúc]])(prefix[, start[, end]])
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
73(prefix[, start[, end]])

Trả về

str(somestring, 'UTF8')
55 Nếu dữ liệu nhị phân bắt đầu với tiền tố được chỉ định, nếu không, hãy trả về
str(somestring, 'UTF8')
37. Tiền tố cũng có thể là một bộ tiền tố để tìm kiếm. Với bắt đầu tùy chọn, kiểm tra bắt đầu ở vị trí đó. Với kết thúc tùy chọn, dừng so sánh ở vị trí đó.

Tiền tố (ES) để tìm kiếm có thể là bất kỳ đối tượng giống như byte nào.bytes-like object.

________ 1009 ________ 886 (Bảng, /, xóa = B '')(table, /, delete=b'')
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
86(table, /, delete=b'')

Trả về một bản sao của các byte hoặc đối tượng bytearray trong đó tất cả các byte xảy ra trong xóa đối số tùy chọn được xóa và các byte còn lại đã được ánh xạ qua bảng dịch đã cho, phải là đối tượng byte có độ dài 256.

Bạn có thể sử dụng phương thức

str(somestring, 'UTF8')
099 để tạo bảng dịch.

Đặt đối số bảng thành

str(somestring, 'UTF8')
30 cho các bản dịch chỉ xóa các ký tự:

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
4

Thay đổi trong phiên bản 3.6: Xóa hiện được hỗ trợ như một đối số từ khóa.delete is now supported as a keyword argument.

Các phương pháp sau trên byte và các đối tượng bytearray có các hành vi mặc định giả sử việc sử dụng các định dạng nhị phân tương thích ASCII, nhưng vẫn có thể được sử dụng với dữ liệu nhị phân tùy ý bằng cách truyền các đối số thích hợp. Lưu ý rằng tất cả các phương thức bytearray trong phần này không hoạt động tại chỗ và thay vào đó tạo ra các đối tượng mới.

________ 1009 ________ 668 (chiều rộng [, fillbyte])(width[, fillbyte])
str(somestring, 'UTF8')
011
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
68(width[, fillbyte])

Trả về một bản sao của đối tượng tập trung theo một chuỗi chiều dài chiều dài. Đệm được thực hiện bằng cách sử dụng fillbyte được chỉ định (mặc định là không gian ASCII). Đối với các đối tượng

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42, chuỗi gốc được trả về nếu chiều rộng nhỏ hơn hoặc bằng
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
32.

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

________ 1009 ________ 796 (chiều rộng [, fillbyte])(width[, fillbyte])
str(somestring, 'UTF8')
011
def bit_count(self):
    return bin(self).count("1")
96(width[, fillbyte])

Trả về một bản sao của đối tượng còn lại hợp lý theo một chuỗi chiều rộng. Đệm được thực hiện bằng cách sử dụng fillbyte được chỉ định (mặc định là không gian ASCII). Đối với các đối tượng

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42, chuỗi gốc được trả về nếu chiều rộng nhỏ hơn hoặc bằng
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
32.

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

________ 1009 ________ 796 (chiều rộng [, fillbyte])([chars])
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
01([chars])

Trả về một bản sao của đối tượng còn lại hợp lý theo một chuỗi chiều rộng. Đệm được thực hiện bằng cách sử dụng fillbyte được chỉ định (mặc định là không gian ASCII). Đối với các đối tượng

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42, chuỗi gốc được trả về nếu chiều rộng nhỏ hơn hoặc bằng
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
32.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
5

________ 1009 ________ 801 ([chars])bytes-like object. See

str(somestring, 'UTF8')
118 for a method that will remove a single prefix string rather than all of a set of characters. For example:

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

________ 1009 ________ 796 (chiều rộng [, fillbyte])(width[, fillbyte])
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
28(width[, fillbyte])

Trả về một bản sao của đối tượng còn lại hợp lý theo một chuỗi chiều rộng. Đệm được thực hiện bằng cách sử dụng fillbyte được chỉ định (mặc định là không gian ASCII). Đối với các đối tượng

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42, chuỗi gốc được trả về nếu chiều rộng nhỏ hơn hoặc bằng
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
32.

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

________ 1009 ________ 796 (chiều rộng [, fillbyte])(sep=None, maxsplit=- 1)
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
33(sep=None, maxsplit=- 1)

Chia trình tự nhị phân thành các chuỗi cùng loại, sử dụng SEP làm chuỗi DELIMITER. Nếu MAXSplit được đưa ra, tại hầu hết các phân tách MaxSplit được thực hiện, những cái ngoài cùng bên phải. Nếu SEP không được chỉ định hoặc

str(somestring, 'UTF8')
30, bất kỳ phần sau nào chỉ bao gồm khoảng trắng ASCII là một dấu tách. Ngoại trừ việc chia tách từ bên phải,
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
35 hoạt động như
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
36 được mô tả chi tiết dưới đây.

________ 1009 ________ 838 ([chars]) ____ ____ 1011 ________ 838 ([chars])([chars])
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
38([chars])

Trả về một bản sao của chuỗi với byte byte được chỉ định được xóa. Đối số chars là một chuỗi nhị phân chỉ định tập hợp các giá trị byte sẽ được xóa - tên đề cập đến thực tế phương pháp này thường được sử dụng với các ký tự ASCII. Nếu bị bỏ qua hoặc

str(somestring, 'UTF8')
30, đối số ký tự mặc định sẽ loại bỏ khoảng trắng ASCII. Đối số chars không phải là một hậu tố; Thay vào đó, tất cả các kết hợp các giá trị của nó đều bị tước:

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7

Trình tự nhị phân của các giá trị byte để xóa có thể là bất kỳ đối tượng giống như byte nào. Xem

str(somestring, 'UTF8')
137 để biết phương thức sẽ loại bỏ một chuỗi hậu tố duy nhất thay vì tất cả một tập hợp các ký tự. Ví dụ:bytes-like object. See
str(somestring, 'UTF8')
137 for a method that will remove a single suffix string rather than all of a set of characters. For example:

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

________ 1009 ________ 842 (SEP = none, MaxSplit =- 1)(sep=None, maxsplit=- 1)
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
42(sep=None, maxsplit=- 1)

Chia trình tự nhị phân thành các chuỗi cùng loại, sử dụng SEP làm chuỗi DELIMITER. Nếu MAXSplit được đưa ra và không âm, thì hầu hết các phân tách MAXSplit được thực hiện (do đó, danh sách sẽ có nhiều nhất là các yếu tố

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
43). Nếu MAXSplit không được chỉ định hoặc là
somestring.strip()
41, thì không có giới hạn về số lượng chia tách (tất cả các phân tách có thể được thực hiện).

Nếu SEP được đưa ra, các phân định liên tiếp không được nhóm lại với nhau và được coi là phân định các chuỗi trống (ví dụ:

str(somestring, 'UTF8')
144 trả về
str(somestring, 'UTF8')
145). Đối số SEP có thể bao gồm một chuỗi multibyte (ví dụ:
str(somestring, 'UTF8')
146 trả về
str(somestring, 'UTF8')
147). Tách một chuỗi trống với một dấu phân cách được chỉ định trả về
str(somestring, 'UTF8')
148 hoặc
str(somestring, 'UTF8')
149 tùy thuộc vào loại đối tượng bị chia tách. Đối số SEP có thể là bất kỳ đối tượng giống như byte.bytes-like object.

Ví dụ:

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9

Nếu SEP không được chỉ định hoặc là

str(somestring, 'UTF8')
30, một thuật toán phân tách khác nhau được áp dụng: Các lần chạy của khoảng trắng ASCII liên tiếp được coi là một dấu phân cách duy nhất và kết quả sẽ không chứa các chuỗi trống ở đầu hoặc kết thúc nếu chuỗi có phần nào dẫn đầu hoặc kéo dài. Do đó, việc chia một chuỗi trống hoặc một chuỗi chỉ bao gồm khoảng trắng ASCII mà không có dấu phân cách được chỉ định trả về
str(somestring, 'UTF8')
48.

Ví dụ:

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
0

Nếu SEP không được chỉ định hoặc là
str(somestring, 'UTF8')
30, một thuật toán phân tách khác nhau được áp dụng: Các lần chạy của khoảng trắng ASCII liên tiếp được coi là một dấu phân cách duy nhất và kết quả sẽ không chứa các chuỗi trống ở đầu hoặc kết thúc nếu chuỗi có phần nào dẫn đầu hoặc kéo dài. Do đó, việc chia một chuỗi trống hoặc một chuỗi chỉ bao gồm khoảng trắng ASCII mà không có dấu phân cách được chỉ định trả về
str(somestring, 'UTF8')
48.([chars])
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
77([chars])

________ 1009 ________ 877 ([chars]) ____ ____ 1011 ________ 877 ([chars])

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
1

Trả về một bản sao của chuỗi với các byte dẫn đầu và dấu vết được chỉ định. Đối số chars là một chuỗi nhị phân chỉ định tập hợp các giá trị byte sẽ được xóa - tên đề cập đến thực tế phương pháp này thường được sử dụng với các ký tự ASCII. Nếu bị bỏ qua hoặc

str(somestring, 'UTF8')
30, đối số ký tự mặc định sẽ loại bỏ khoảng trắng ASCII. Đối số chars không phải là tiền tố hoặc hậu tố; Thay vào đó, tất cả các kết hợp các giá trị của nó đều bị tước:bytes-like object.

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

________ 1009 ________ 842 (SEP = none, MaxSplit =- 1)

Chia trình tự nhị phân thành các chuỗi cùng loại, sử dụng SEP làm chuỗi DELIMITER. Nếu MAXSplit được đưa ra và không âm, thì hầu hết các phân tách MAXSplit được thực hiện (do đó, danh sách sẽ có nhiều nhất là các yếu tố
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
43). Nếu MAXSplit không được chỉ định hoặc là
somestring.strip()
41, thì không có giới hạn về số lượng chia tách (tất cả các phân tách có thể được thực hiện).()
str(somestring, 'UTF8')
011
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
58()

Nếu SEP được đưa ra, các phân định liên tiếp không được nhóm lại với nhau và được coi là phân định các chuỗi trống (ví dụ:

str(somestring, 'UTF8')
144 trả về
str(somestring, 'UTF8')
145). Đối số SEP có thể bao gồm một chuỗi multibyte (ví dụ:
str(somestring, 'UTF8')
146 trả về
str(somestring, 'UTF8')
147). Tách một chuỗi trống với một dấu phân cách được chỉ định trả về
str(somestring, 'UTF8')
148 hoặc
str(somestring, 'UTF8')
149 tùy thuộc vào loại đối tượng bị chia tách. Đối số SEP có thể là bất kỳ đối tượng giống như byte.

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

________ 1009 ________ 842 (SEP = none, MaxSplit =- 1)(tabsize=8)
str(somestring, 'UTF8')
011
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
87(tabsize=8)

Chia trình tự nhị phân thành các chuỗi cùng loại, sử dụng SEP làm chuỗi DELIMITER. Nếu MAXSplit được đưa ra và không âm, thì hầu hết các phân tách MAXSplit được thực hiện (do đó, danh sách sẽ có nhiều nhất là các yếu tố

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
43). Nếu MAXSplit không được chỉ định hoặc là
somestring.strip()
41, thì không có giới hạn về số lượng chia tách (tất cả các phân tách có thể được thực hiện).

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
2

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

________ 1009 ________ 727 () ____ ____ 1011 ________ 727 () ¶()
str(somestring, 'UTF8')
011
def bit_count(self):
    return bin(self).count("1")
27()

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các byte trong chuỗi là các ký tự ASCII theo thứ tự chữ cái hoặc các chữ số thập phân ASCII và trình tự không trống,
str(somestring, 'UTF8')
37 nếu không. Các ký tự ASCII chữ cái là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
174. Các chữ số thập phân ASCII là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
175.

Ví dụ:

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
3

________ 1009 ________ 737 () ____ ____ 1011 ________ 737 () ¶()
str(somestring, 'UTF8')
011
def bit_count(self):
    return bin(self).count("1")
37()

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các byte trong chuỗi là các ký tự ASCII chữ cái và trình tự không trống,
str(somestring, 'UTF8')
37 khác. Các ký tự ASCII chữ cái là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
174.

Ví dụ:

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
4

________ 1009 ________ 737 () ____ ____ 1011 ________ 737 () ¶()
str(somestring, 'UTF8')
011
def bit_count(self):
    return bin(self).count("1")
41()

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các byte trong chuỗi là các ký tự ASCII chữ cái và trình tự không trống,
str(somestring, 'UTF8')
37 khác. Các ký tự ASCII chữ cái là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
174.

________ 1009 ________ 741 () ________ 1011 ________ 741 () ¶

Trả về
str(somestring, 'UTF8')
55 Nếu chuỗi trống hoặc tất cả các byte trong chuỗi là ASCII,
str(somestring, 'UTF8')
37 khác. Byte ASCII nằm trong phạm vi 0-0x7F.()
str(somestring, 'UTF8')
011
def bit_count(self):
    return bin(self).count("1")
49()

Mới trong phiên bản 3.7.

Ví dụ:

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
5

________ 1009 ________ 737 () ____ ____ 1011 ________ 737 () ¶()
str(somestring, 'UTF8')
011
def bit_count(self):
    return bin(self).count("1")
60()

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các byte trong chuỗi là các ký tự ASCII chữ cái và trình tự không trống,
str(somestring, 'UTF8')
37 khác. Các ký tự ASCII chữ cái là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
174.

Ví dụ:

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
6

________ 1009 ________ 737 () ____ ____ 1011 ________ 737 () ¶

Trả về
str(somestring, 'UTF8')
55 Nếu tất cả các byte trong chuỗi là các ký tự ASCII chữ cái và trình tự không trống,
str(somestring, 'UTF8')
37 khác. Các ký tự ASCII chữ cái là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
174.()
str(somestring, 'UTF8')
011
def bit_count(self):
    return bin(self).count("1")
75()

________ 1009 ________ 741 () ________ 1011 ________ 741 () ¶

Trả về
str(somestring, 'UTF8')
55 Nếu chuỗi trống hoặc tất cả các byte trong chuỗi là ASCII,
str(somestring, 'UTF8')
37 khác. Byte ASCII nằm trong phạm vi 0-0x7F.()
str(somestring, 'UTF8')
011
def bit_count(self):
    return bin(self).count("1")
84()

Mới trong phiên bản 3.7.

Ví dụ:

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
7

________ 1009 ________ 737 () ____ ____ 1011 ________ 737 () ¶()
str(somestring, 'UTF8')
011
def bit_count(self):
    return bin(self).count("1")
88()

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các byte trong chuỗi là các ký tự ASCII chữ cái và trình tự không trống,
str(somestring, 'UTF8')
37 khác. Các ký tự ASCII chữ cái là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
174.

Ví dụ:

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
8

________ 1009 ________ 737 () ____ ____ 1011 ________ 737 () ¶

Trả về
str(somestring, 'UTF8')
55 Nếu tất cả các byte trong chuỗi là các ký tự ASCII chữ cái và trình tự không trống,
str(somestring, 'UTF8')
37 khác. Các ký tự ASCII chữ cái là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
174.()
str(somestring, 'UTF8')
011
def bit_count(self):
    return bin(self).count("1")
99()

________ 1009 ________ 741 () ________ 1011 ________ 741 () ¶

Ví dụ:

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
9

________ 1009 ________ 737 () ____ ____ 1011 ________ 737 () ¶

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

Trả về
str(somestring, 'UTF8')
55 Nếu tất cả các byte trong chuỗi là các ký tự ASCII chữ cái và trình tự không trống,
str(somestring, 'UTF8')
37 khác. Các ký tự ASCII chữ cái là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
174.(keepends=False)
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
54(keepends=False)

________ 1009 ________ 741 () ________ 1011 ________ 741 () ¶universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends is given and true.

Ví dụ:

def bit_count(self):
    return bin(self).count("1")
0

________ 1009 ________ 737 () ____ ____ 1011 ________ 737 () ¶

def bit_count(self):
    return bin(self).count("1")
1

Trả về
str(somestring, 'UTF8')
55 Nếu tất cả các byte trong chuỗi là các ký tự ASCII chữ cái và trình tự không trống,
str(somestring, 'UTF8')
37 khác. Các ký tự ASCII chữ cái là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
174.()
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
80()

________ 1009 ________ 741 () ________ 1011 ________ 741 () ¶

Ví dụ:

def bit_count(self):
    return bin(self).count("1")
2

________ 1009 ________ 737 () ____ ____ 1011 ________ 737 () ¶

Trả về

str(somestring, 'UTF8')
55 Nếu tất cả các byte trong chuỗi là các ký tự ASCII chữ cái và trình tự không trống,
str(somestring, 'UTF8')
37 khác. Các ký tự ASCII chữ cái là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
174.

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

________ 1009 ________ 741 () ________ 1011 ________ 741 () ¶()
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
83()

Trả về

str(somestring, 'UTF8')
55 Nếu chuỗi trống hoặc tất cả các byte trong chuỗi là ASCII,
str(somestring, 'UTF8')
37 khác. Byte ASCII nằm trong phạm vi 0-0x7F.

Ví dụ:

def bit_count(self):
    return bin(self).count("1")
3

Các ký tự ASCII viết thường là các giá trị byte trong chuỗi

str(somestring, 'UTF8')
202. Các ký tự ASCII từ trên là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
203. Tất cả các giá trị byte khác đều không được giới thiệu.

Thuật toán sử dụng một định nghĩa độc lập ngôn ngữ đơn giản của một từ là các nhóm chữ cái liên tiếp. Định nghĩa hoạt động trong nhiều bối cảnh nhưng nó có nghĩa là các dấu nháy đơn trong các cơn co thắt và sở hữu hình thành ranh giới từ, có thể không phải là kết quả mong muốn:

def bit_count(self):
    return bin(self).count("1")
4

Một cách giải quyết cho dấu nháy đơn có thể được xây dựng bằng cách sử dụng các biểu thức thông thường:

def bit_count(self):
    return bin(self).count("1")
5

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

________ 1009 ________ 893 () ________ 1011 ________ 893 () ¶()
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
93()

Trả về một bản sao của chuỗi với tất cả các ký tự ASCII viết thường được chuyển đổi thành đối tác chữ hoa tương ứng của chúng.

Ví dụ:

def bit_count(self):
    return bin(self).count("1")
6

Các ký tự ASCII viết thường là các giá trị byte trong chuỗi

str(somestring, 'UTF8')
202. Các ký tự ASCII từ trên là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
203.

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

________ 1009 ________ 893 () ________ 1011 ________ 893 () ¶(width)
str(somestring, 'UTF8')
011
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
98(width)

Trả về một bản sao của chuỗi với tất cả các ký tự ASCII viết thường được chuyển đổi thành đối tác chữ hoa tương ứng của chúng.

Ví dụ:

def bit_count(self):
    return bin(self).count("1")
7

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

________ 1009 ________ 893 () ________ 1011 ________ 893 () ¶

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

________ 1009 ________ 893 () ________ 1011 ________ 893 () ¶

Trả về một bản sao của chuỗi với tất cả các ký tự ASCII viết thường được chuyển đổi thành đối tác chữ hoa tương ứng của chúng.

Các ký tự ASCII viết thường là các giá trị byte trong chuỗi

str(somestring, 'UTF8')
202. Các ký tự ASCII từ trên là các giá trị byte trong chuỗi
str(somestring, 'UTF8')
203.

  1. ________ 1009 ________ 898 (chiều rộng) ____ ____ 1011 ________ 898 (chiều rộng) ¶

  2. Trả về một bản sao của chuỗi bên trái chứa đầy ASCII

    str(somestring, 'UTF8')
    
    261 chữ số để tạo ra một chuỗi chiều rộng chiều dài. Một tiền tố dấu hiệu hàng đầu (________ 1262/
    str(somestring, 'UTF8')
    
    263) được xử lý bằng cách chèn đệm sau ký tự dấu hiệu chứ không phải trước. Đối với các đối tượng
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    42, chuỗi gốc được trả về nếu chiều rộng nhỏ hơn hoặc bằng
    str(somestring, 'UTF8')
    
    265.

  3. ________ 655 Byte theo phong cách

  4. Các hoạt động định dạng được mô tả ở đây thể hiện một loạt các kỳ quặc dẫn đến một số lỗi phổ biến (chẳng hạn như không hiển thị chính xác các bộ dữ liệu và từ điển). Nếu giá trị được in có thể là một tuple hoặc từ điển, hãy bọc nó thành một tuple.

  5. Các đối tượng byte (________ 442/________ 443) có một hoạt động tích hợp duy nhất: toán tử

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    05 (modulo). Điều này còn được gọi là toán tử định dạng byte hoặc nội suy. Cho
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    06 (trong đó định dạng là đối tượng byte), thông số kỹ thuật chuyển đổi
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    05 ở định dạng được thay thế bằng 0 hoặc nhiều phần tử của các giá trị. Hiệu ứng tương tự như sử dụng
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    08 trong ngôn ngữ C.

  6. Nếu định dạng yêu cầu một đối số duy nhất, các giá trị có thể là một đối tượng không phải là một đối tượng. 5 Nếu không, các giá trị phải là một tuple với chính xác số lượng mục được chỉ định bởi đối tượng byte định dạng hoặc một đối tượng ánh xạ duy nhất (ví dụ: từ điển).

  7. Trình xác định chuyển đổi chứa hai hoặc nhiều ký tự và có các thành phần sau, phải xảy ra theo thứ tự này:

Ký tự

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
09, đánh dấu sự khởi đầu của trình xác định.

def bit_count(self):
    return bin(self).count("1")
8

Khóa ánh xạ (tùy chọn), bao gồm một chuỗi các ký tự dấu ngoặc đơn (ví dụ:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
10).

Cờ chuyển đổi (tùy chọn), ảnh hưởng đến kết quả của một số loại chuyển đổi.

Chiều rộng trường tối thiểu (tùy chọn). Nếu được chỉ định là

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
11 (dấu hoa thị), chiều rộng thực tế được đọc từ phần tử tiếp theo của bộ tple trong các giá trị và đối tượng để chuyển đổi xuất hiện sau chiều rộng trường tối thiểu và độ chính xác tùy chọn.

Độ chính xác (tùy chọn), được đưa ra dưới dạng

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
12 (dấu chấm) theo sau là độ chính xác. Nếu được chỉ định là
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
11 (dấu hoa thị), độ chính xác thực tế được đọc từ phần tử tiếp theo của tuple trong các giá trị và giá trị để chuyển đổi xuất hiện sau độ chính xác.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
16

Công cụ sửa đổi độ dài (tùy chọn).

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
99

Loại chuyển đổi.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
01

Khi đối số đúng là một từ điển (hoặc loại ánh xạ khác), thì các định dạng trong đối tượng byte phải bao gồm khóa ánh xạ dấu ngoặc đơn vào từ điển đó được chèn ngay sau ký tự

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
09. Khóa ánh xạ chọn giá trị được định dạng từ ánh xạ. Ví dụ:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
20

Trong trường hợp này, không có nhà xác định

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
19 có thể xảy ra ở định dạng (vì chúng yêu cầu danh sách tham số tuần tự).

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
00

Các ký tự cờ chuyển đổi là:

Một công cụ sửa đổi độ dài (

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
24,
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
25 hoặc
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
26) có thể xuất hiện, nhưng bị bỏ qua vì nó không cần thiết cho Python - vì vậy ví dụ:
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
27 giống hệt với
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
28.

Các loại chuyển đổi là:

Chuyển đổi

Nghĩa

Ghi chú

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
29

Đã ký số nguyên thập phân.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
30

Đã ký số nguyên thập phân.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
31

Đã ký giá trị bát phân.

(1)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
32

Loại lỗi thời - Nó giống hệt với

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
29.

(8)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
34

Đã ký tên thập lục phân (chữ thường).

(2)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
35

Đã ký tên thập lục phân (chữ hoa).

(2)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
36

Định dạng theo cấp số mũ (chữ thường).

(3)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
37

Định dạng số mũ điểm nổi (chữ hoa).

(3)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
38

Định dạng số thập phân điểm nổi.

(3)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
39

Định dạng số thập phân điểm nổi.

(3)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
40

Định dạng điểm nổi. Sử dụng định dạng theo cấp số nhân nếu số mũ nhỏ hơn -4 hoặc không nhỏ hơn độ chính xác, định dạng thập phân nếu không.

(4)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
41

Định dạng điểm nổi. Sử dụng định dạng theo cấp số nhân Uppercase nếu số mũ nhỏ hơn -4 hoặc không nhỏ hơn độ chính xác, định dạng thập phân khác.

(4)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
42

Byte đơn (chấp nhận số nguyên hoặc các đối tượng byte đơn).

str(somestring, 'UTF8')
307

Byte (bất kỳ đối tượng nào tuân theo giao thức bộ đệm hoặc có

str(somestring, 'UTF8')
308).buffer protocol or has
str(somestring, 'UTF8')
308).

(5)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
45

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
45 là bí danh cho
str(somestring, 'UTF8')
307 và chỉ nên được sử dụng cho các cơ sở mã Python2/3.

(6)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
47

Byte (chuyển đổi bất kỳ đối tượng Python nào bằng cách sử dụng

str(somestring, 'UTF8')
313).

(5)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
43

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
43 là bí danh cho
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
47 và chỉ nên được sử dụng cho các cơ sở mã Python2/3.

(7)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
09

Không có đối số được chuyển đổi, kết quả là một ký tự

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
09 trong kết quả.

Notes:

  1. Hình thức thay thế làm cho một bộ xác định octal hàng đầu (

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    51) được chèn trước chữ số đầu tiên.

  2. Hình thức thay thế gây ra

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    52 hoặc
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    53 hàng đầu (tùy thuộc vào định dạng
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    34 hay
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    35 đã được sử dụng) để được chèn trước chữ số đầu tiên.

  3. Hình thức thay thế làm cho kết quả luôn chứa một điểm thập phân, ngay cả khi không có chữ số nào tuân theo nó.

    Độ chính xác xác định số lượng chữ số sau điểm thập phân và mặc định là 6.

  4. Hình thức thay thế gây ra kết quả luôn chứa một điểm thập phân và các số 0 không được loại bỏ như chúng sẽ có.

    Độ chính xác xác định số lượng các chữ số đáng kể trước và sau điểm thập phân và mặc định là 6.

  5. Nếu độ chính xác là

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    56, đầu ra bị cắt giảm thành
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    56 ký tự.

  6. str(somestring, 'UTF8')
    
    326 không được chấp nhận, nhưng sẽ không bị xóa trong chuỗi 3.x.

  7. str(somestring, 'UTF8')
    
    327 không được chấp nhận, nhưng sẽ không bị xóa trong chuỗi 3.x.

  8. Xem PEP 237.PEP 237.

Ghi chú

Phiên bản bytearray của phương pháp này không hoạt động tại chỗ - nó luôn tạo ra một đối tượng mới, ngay cả khi không có thay đổi nào được thực hiện.

Xem thêm

PEP 461 - Thêm % định dạng vào byte và bytearray - Adding % formatting to bytes and bytearray

Mới trong phiên bản 3.5.

Chế độ xem bộ nhớ

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
64 Các đối tượng cho phép mã Python truy cập dữ liệu nội bộ của một đối tượng hỗ trợ giao thức bộ đệm mà không cần sao chép.buffer protocol without copying.

Lớp ________ 1329 (đối tượng) ¶(object)

Tạo một

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
64 tham chiếu đối tượng. Đối tượng phải hỗ trợ giao thức bộ đệm. Các đối tượng tích hợp hỗ trợ giao thức bộ đệm bao gồm
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42 và
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
43.

Một

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
64 có khái niệm về một phần tử, đó là đơn vị bộ nhớ nguyên tử được xử lý bởi đối tượng gốc. Đối với nhiều loại đơn giản như
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42 và
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
43, một phần tử là một byte duy nhất, nhưng các loại khác như
str(somestring, 'UTF8')
336 có thể có các phần tử lớn hơn.

str(somestring, 'UTF8')
337 bằng chiều dài của
str(somestring, 'UTF8')
338. Nếu
str(somestring, 'UTF8')
339, độ dài là 1. Nếu
str(somestring, 'UTF8')
340, độ dài bằng số lượng phần tử trong chế độ xem. Đối với kích thước cao hơn, chiều dài bằng chiều dài của biểu diễn danh sách lồng nhau của chế độ xem. Thuộc tính
str(somestring, 'UTF8')
341 sẽ cung cấp cho bạn số lượng byte trong một phần tử.

A

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
64 hỗ trợ cắt và lập chỉ mục để hiển thị dữ liệu của nó. Cắt một chiều sẽ dẫn đến một mục tiêu phụ:

def bit_count(self):
    return bin(self).count("1")
9

Nếu

str(somestring, 'UTF8')
343 là một trong những nhà xác định định dạng gốc từ mô -đun
str(somestring, 'UTF8')
344, thì việc lập chỉ mục với số nguyên hoặc một bộ số nguyên cũng được hỗ trợ và trả về một phần tử duy nhất với đúng loại. MemoryViews một chiều có thể được lập chỉ mục bằng một số nguyên hoặc một tuple một số nguyên. Bộ nhớ đa chiều có thể được lập chỉ mục với các bộ dữ liệu chính xác của các số nguyên NDIM trong đó NDIM là số lượng kích thước. MemoryViews không có chiều có thể được lập chỉ mục với bộ gốc trống.

Dưới đây là một ví dụ với định dạng không byte:

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
0

Nếu đối tượng cơ bản có thể ghi, MemoryView hỗ trợ gán lát cắt một chiều. Không cho phép thay đổi kích thước:

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
1

Bộ nhớ một chiều của các loại có thể băm (chỉ đọc) với các định dạng ‘B,‘ B, hoặc ‘C, cũng có thể băm. Hash được định nghĩa là

str(somestring, 'UTF8')
345:

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
2

Đã thay đổi trong phiên bản 3.3: MemoryViews một chiều hiện có thể được cắt lát. MemoryViews một chiều với các định dạng ‘B,‘ B, hoặc ‘C, hiện có thể băm.One-dimensional memoryviews can now be sliced. One-dimensional memoryviews with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Đã thay đổi trong phiên bản 3.5: MemoryViews hiện có thể được lập chỉ mục với bộ số của số nguyên.memoryviews can now be indexed with tuple of integers.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
64 có một số phương pháp:

________ 1347 (xuất khẩu) ¶(exporter)

Một bộ nhớ và một nhà xuất khẩu PEP 3118 bằng nhau nếu hình dạng của chúng tương đương và nếu tất cả các giá trị tương ứng đều bằng nhau khi các mã định dạng tương ứng của operands được giải thích bằng cách sử dụng cú pháp

str(somestring, 'UTF8')
344.PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding values are equal when the operands’ respective format codes are interpreted using
str(somestring, 'UTF8')
344 syntax.

Đối với tập hợp con của các chuỗi định dạng

str(somestring, 'UTF8')
344 hiện được hỗ trợ bởi
str(somestring, 'UTF8')
350,
str(somestring, 'UTF8')
351 và
str(somestring, 'UTF8')
352 bằng nhau nếu
str(somestring, 'UTF8')
353:

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
3

Nếu một trong hai chuỗi định dạng không được hỗ trợ bởi mô -đun

str(somestring, 'UTF8')
344, thì các đối tượng sẽ luôn so sánh là không đồng đều (ngay cả khi các chuỗi định dạng và nội dung bộ đệm là giống hệt nhau):

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
4

Lưu ý rằng, như với các số điểm nổi,

str(somestring, 'UTF8')
355 không ngụ ý
str(somestring, 'UTF8')
356 cho các đối tượng MemoryView.

Thay đổi trong phiên bản 3.3: Các phiên bản trước đã so sánh bộ nhớ thô không quan tâm đến định dạng vật phẩm và cấu trúc mảng logic.Previous versions compared the raw memory disregarding the item format and the logical array structure.

________ 1357 (đặt hàng = không) ¶(order=None)

Trả về dữ liệu trong bộ đệm dưới dạng bytestring. Điều này tương đương với việc gọi hàm tạo

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42 trên MemoryView.

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
5

Đối với các mảng không liên tục, kết quả bằng với biểu diễn danh sách phẳng với tất cả các phần tử được chuyển đổi thành byte.

str(somestring, 'UTF8')
359 hỗ trợ tất cả các chuỗi định dạng, bao gồm cả các chuỗi không có trong cú pháp mô -đun
str(somestring, 'UTF8')
344.

Mới trong phiên bản 3.8: Đơn hàng có thể là {‘C,‘ f, ‘A,}. Khi đặt hàng là ‘C, hoặc‘ F, dữ liệu của mảng ban đầu được chuyển đổi thành thứ tự C hoặc Fortran. Đối với các chế độ xem tiếp giáp, ‘A, trả về một bản sao chính xác của bộ nhớ vật lý. Đặc biệt, trật tự Fortran trong bộ nhớ được bảo tồn. Đối với các chế độ xem không liên tục, dữ liệu được chuyển đổi thành C trước. Đặt hàng = không giống như thứ tự = xông c.order can be {‘C’, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory. In particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to C first. order=None is the same as order=’C’.

________ 322 ([sep [, byte_per_sep]])([sep[, bytes_per_sep]])

Trả về một đối tượng chuỗi chứa hai chữ số thập lục phân cho mỗi byte trong bộ đệm.

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
6

Mới trong phiên bản 3.5.

Đã thay đổi trong phiên bản 3.8: Tương tự như

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
85,
str(somestring, 'UTF8')
363 hiện hỗ trợ các tham số tùy chọn SEP và BYTES_PER_SEP để chèn các phân tách giữa các byte trong đầu ra hex.Similar to
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
85,
str(somestring, 'UTF8')
363 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

________ 1364 ()()

Trả về dữ liệu trong bộ đệm dưới dạng danh sách các yếu tố.

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
7

Đã thay đổi trong phiên bản 3.3:

str(somestring, 'UTF8')
350 hiện hỗ trợ tất cả các định dạng gốc ký tự đơn trong cú pháp mô-đun
str(somestring, 'UTF8')
344 cũng như các biểu diễn đa chiều.
str(somestring, 'UTF8')
350 now supports all single character native formats in
str(somestring, 'UTF8')
344 module syntax as well as multi-dimensional representations.

________ 1367 ()()

Trả về một phiên bản đọc của đối tượng MemoryView. Đối tượng MemoryView ban đầu không thay đổi.

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
8

Mới trong phiên bản 3.8.

________ 1368 ()()

Phát hành bộ đệm cơ bản được hiển thị bởi đối tượng MemoryView. Nhiều đối tượng thực hiện các hành động đặc biệt khi một chế độ xem được giữ trên chúng (ví dụ:

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
43 sẽ tạm thời cấm thay đổi kích thước); Do đó, gọi phát hành () rất tiện dụng để loại bỏ các hạn chế này (và giải phóng bất kỳ tài nguyên lơ lửng nào) càng sớm càng tốt.

Sau khi phương thức này đã được gọi, bất kỳ hoạt động nào nữa trên chế độ xem đều tăng

somestring.strip()
77 (ngoại trừ
str(somestring, 'UTF8')
371 có thể được gọi là nhiều lần):

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
9

Giao thức quản lý bối cảnh có thể được sử dụng cho một hiệu ứng tương tự, sử dụng câu lệnh

str(somestring, 'UTF8')
372:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
0

Mới trong phiên bản 3.2.

________ 1373 (định dạng [, hình]) ¶(format[, shape])

Đúc một bộ nhớ vào một định dạng hoặc hình dạng mới. Hình dạng mặc định là

str(somestring, 'UTF8')
374, có nghĩa là chế độ xem kết quả sẽ là một chiều. Giá trị trả về là một bộ nhớ mới, nhưng bản thân bộ đệm không được sao chép. Các phôi được hỗ trợ là 1D -> C -TIÊU CHUẨN và C -TIÊU CHUẨN -> 1D.contiguous and C-contiguous -> 1D.

Định dạng đích được giới hạn ở một định dạng gốc nguyên tố trong cú pháp

str(somestring, 'UTF8')
344. Một trong những định dạng phải là định dạng byte (‘B,‘ B, hoặc ‘C,). Độ dài byte của kết quả phải giống như chiều dài ban đầu.

Đúc 1D/dài đến 1D/byte không dấu:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
1

Đúc 1D/byte không dấu thành 1D/char:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
2

Đúc 1D/byte đến 3D/INTS đến 1D/đã ký char:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
3

Diễn viên 1D/không dấu dài đến 2D/không dấu dài:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
4

Mới trong phiên bản 3.3.

Đã thay đổi trong phiên bản 3.5: Định dạng nguồn không còn bị hạn chế khi đúc vào chế độ xem byte.The source format is no longer restricted when casting to a byte view.

Ngoài ra còn có một số thuộc tính đọc có sẵn:

________ 1376¶

Đối tượng bên dưới của bộ nhớview:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
5

Mới trong phiên bản 3.3.

Đã thay đổi trong phiên bản 3.5: Định dạng nguồn không còn bị hạn chế khi đúc vào chế độ xem byte.

Ngoài ra còn có một số thuộc tính đọc có sẵn:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
6

________ 1376¶

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
7

Mới trong phiên bản 3.3.

Đã thay đổi trong phiên bản 3.5: Định dạng nguồn không còn bị hạn chế khi đúc vào chế độ xem byte.

Ngoài ra còn có một số thuộc tính đọc có sẵn:

________ 1376¶

Đối tượng bên dưới của bộ nhớview:

Đã thay đổi trong phiên bản 3.3: Định dạng

str(somestring, 'UTF8')
384 hiện được xử lý theo cú pháp mô -đun cấu trúc. Điều này có nghĩa là
str(somestring, 'UTF8')
385.format
str(somestring, 'UTF8')
384 is now handled according to the struct module syntax. This means that
str(somestring, 'UTF8')
385.

________ 1386¶

Kích thước tính bằng byte của mỗi phần tử của bộ nhớView:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
8

________ 1387¶

Một số nguyên cho biết có bao nhiêu kích thước của một mảng đa chiều mà bộ nhớ đại diện.

________ 1388¶

Một bộ số số nguyên có độ dài của

str(somestring, 'UTF8')
389 cho hình dạng của bộ nhớ dưới dạng một mảng chiều n.

Đã thay đổi trong phiên bản 3.3: Một bộ tuple trống thay vì

str(somestring, 'UTF8')
30 khi ndim = 0.An empty tuple instead of
str(somestring, 'UTF8')
30 when ndim = 0.

________ 1391¶

Một bộ số số nguyên có độ dài của

str(somestring, 'UTF8')
389 cho kích thước bằng byte để truy cập vào từng phần tử cho mỗi chiều của mảng.

Đã thay đổi trong phiên bản 3.3: Một bộ tuple trống thay vì

str(somestring, 'UTF8')
30 khi ndim = 0.An empty tuple instead of
str(somestring, 'UTF8')
30 when ndim = 0.

________ 1391¶

Một bộ số số nguyên có độ dài của

str(somestring, 'UTF8')
389 cho kích thước bằng byte để truy cập vào từng phần tử cho mỗi chiều của mảng.

________ 1394¶

Được sử dụng nội bộ cho các mảng theo phong cách pil. Giá trị chỉ là thông tin.contiguous.

________ 1395¶

Một bool chỉ ra liệu bộ nhớ có phải là C-Contigent hay không.

Mới trong phiên bản 3.3.contiguous.

________ 1395¶

Một bool chỉ ra liệu bộ nhớ có phải là C-Contigent hay không.

Mới trong phiên bản 3.3.contiguous.

________ 1395¶

Một bool chỉ ra liệu bộ nhớ có phải là C-Contigent hay không.

Mới trong phiên bản 3.3.hashable objects. Common uses include membership testing, removing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and symmetric difference. (For other containers see the built-in

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
87,
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
12, and
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
13 classes, and the
str(somestring, 'UTF8')
403 module.)

________ 1396¶

Một bool chỉ ra liệu bộ nhớ có phải là Fortran tiếp giáp hay không.hashable — its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another set.

________ 1397¶

Một bool chỉ ra liệu bộ nhớ có tiếp giáp hay không.

Đặt các loại -
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
88, ________ 489¶([iterable])¶ class
str(somestring, 'UTF8')
416([iterable])

Một đối tượng được thiết lập là một bộ sưu tập không có thứ tự của các đối tượng băm khác biệt. Sử dụng phổ biến bao gồm kiểm tra thành viên, loại bỏ các bản sao khỏi một chuỗi và các hoạt động toán học như giao lộ, liên kết, khác biệt và sự khác biệt đối xứng. .hashable. To represent sets of sets, the inner sets must be

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
89 objects. If iterable is not specified, a new empty set is returned.

Giống như các bộ sưu tập khác, bộ hỗ trợ

str(somestring, 'UTF8')
404,
str(somestring, 'UTF8')
405 và
str(somestring, 'UTF8')
406. Là một bộ sưu tập không có thứ tự, các bộ không ghi lại vị trí phần tử hoặc thứ tự chèn. Theo đó, các bộ không hỗ trợ lập chỉ mục, cắt hoặc hành vi giống như trình tự khác.

  • Hiện tại có hai loại bộ tích hợp,

    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    88 và
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    89. Loại
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    88 có thể thay đổi - nội dung có thể được thay đổi bằng các phương thức như
    str(somestring, 'UTF8')
    
    410 và
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    20. Vì nó có thể thay đổi, nó không có giá trị băm và không thể được sử dụng làm khóa từ điển hoặc là một phần tử của tập khác. Loại
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    89 là bất biến và có thể băm - nội dung của nó không thể được thay đổi sau khi nó được tạo ra; Do đó, nó có thể được sử dụng như một khóa từ điển hoặc là một yếu tố của một bộ khác.

  • Các bộ không trống (không phải đông lạnh) có thể được tạo bằng cách đặt một danh sách các phần tử được phân tách bằng dấu phẩy trong niềng răng, ví dụ:

    str(somestring, 'UTF8')
    
    413, ngoài hàm xây dựng
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    88.

  • Các hàm tạo cho cả hai lớp hoạt động giống nhau:

Lớp ________ 1415 ([itable]) ¶ Class ________ 1416 ([itable]) ¶

Trả về một bộ mới hoặc đối tượng Frozenset có các yếu tố được lấy từ Itable. Các yếu tố của một bộ phải được băm. Để thể hiện các bộ của các bộ, các bộ bên trong phải là các đối tượng
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
89. Nếu có thể được chỉ định, một bộ trống mới được trả về.

Các bộ có thể được tạo bằng một số phương tiện:

Sử dụng danh sách các yếu tố được phân tách bằng dấu phẩy trong niềng răng:
str(somestring, 'UTF8')
413

Sử dụng một thiết lập hiểu:

str(somestring, 'UTF8')
419

Sử dụng hàm tạo loại:
str(somestring, 'UTF8')
50,
str(somestring, 'UTF8')
421,
str(somestring, 'UTF8')
422

Các phiên bản của

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
88 và
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
89 cung cấp các hoạt động sau:

str(somestring, 'UTF8')
425(other)

Trả về số lượng các phần tử trong Set S (Cardinality of S).

str(somestring, 'UTF8')
426(other)
str(somestring, 'UTF8')
431

Kiểm tra x cho tư cách thành viên trong s.

str(somestring, 'UTF8')
427

Kiểm tra x cho không thành viên trong s.

________ 1428 (Khác) ¶(other)
str(somestring, 'UTF8')
435

Trả về

str(somestring, 'UTF8')
55 nếu bộ không có phần tử chung với khác. Các bộ là rời rạc khi và chỉ khi giao điểm của chúng là tập trống.

________ 1430 (Khác)
str(somestring, 'UTF8')
431

Kiểm tra xem mọi yếu tố trong tập hợp là trong khác.

str(somestring, 'UTF8')
432(*others)
str(somestring, 'UTF8')
439

Kiểm tra xem tập hợp có phải là một tập hợp con thích hợp của khác hay không, nghĩa là

str(somestring, 'UTF8')
433.

________ 1434 (Khác)
str(somestring, 'UTF8')
435(*others)
str(somestring, 'UTF8')
441

Kiểm tra xem mọi yếu tố trong khác đều có trong tập hợp.

str(somestring, 'UTF8')
436(*others)
str(somestring, 'UTF8')
443

Kiểm tra xem tập hợp có phải là một superset thích hợp của khác hay không, nghĩa là

str(somestring, 'UTF8')
437.

________ 1438 (*Những người khác)
str(somestring, 'UTF8')
439(other)
str(somestring, 'UTF8')
445

Trả về một bộ mới với các phần tử từ bộ và tất cả các phần tử khác.

________ 1440 (*những người khác)
str(somestring, 'UTF8')
441()

Trả về một bộ mới với các yếu tố phổ biến cho tập hợp và tất cả các yếu tố khác.

________ 1442 (*Những người khác)

str(somestring, 'UTF8')
443

Trả về một bộ mới với các phần tử trong tập hợp không có trong các phần khác.

Các trường hợp của

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
88 được so sánh với các trường hợp
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
89 dựa trên các thành viên của họ. Ví dụ:
str(somestring, 'UTF8')
459 trả về
str(somestring, 'UTF8')
55 và
str(somestring, 'UTF8')
461 cũng vậy.

Các tập hợp con và so sánh bình đẳng không khái quát cho một hàm đơn đặt hàng. Ví dụ: bất kỳ hai tập hợp khác nhau không bằng nhau và không phải là tập hợp của nhau, vì vậy tất cả các lợi nhuận sau đây

str(somestring, 'UTF8')
37:
str(somestring, 'UTF8')
463,
str(somestring, 'UTF8')
464 hoặc
str(somestring, 'UTF8')
465.

Vì các bộ chỉ xác định thứ tự một phần (mối quan hệ tập hợp con), đầu ra của phương thức

str(somestring, 'UTF8')
466 không được xác định cho danh sách các bộ.

Đặt các yếu tố, như các khóa từ điển, phải có thể băm.hashable.

Các hoạt động nhị phân kết hợp các trường hợp

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
88 với
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
89 Trả về loại của toán hạng đầu tiên. Ví dụ:
str(somestring, 'UTF8')
469 Trả về một thể hiện là
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
89.

Bảng sau đây liệt kê các hoạt động có sẵn cho

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
88 không áp dụng cho các trường hợp bất biến của
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
89:

________ 1473 (*Những người khác)
str(somestring, 'UTF8')
474(*others)
str(somestring, 'UTF8')
474

Cập nhật bộ, thêm các yếu tố từ tất cả các yếu tố khác.

________ 1475 (*Những người khác)
str(somestring, 'UTF8')
476(*others)
str(somestring, 'UTF8')
476

Cập nhật bộ, chỉ giữ các yếu tố được tìm thấy trong đó và tất cả các yếu tố khác.

________ 1477 (*Những người khác)
str(somestring, 'UTF8')
478(*others)
str(somestring, 'UTF8')
478

Cập nhật bộ, loại bỏ các yếu tố được tìm thấy trong các yếu tố khác.

________ 1479 (Khác)
str(somestring, 'UTF8')
480(other)
str(somestring, 'UTF8')
480

Cập nhật tập hợp, chỉ giữ các yếu tố được tìm thấy trong một trong hai tập hợp, nhưng không phải trong cả hai.

________ 1481 (elem) ¶(elem)

Thêm phần tử ELEM vào tập hợp.

________ 1482 (elem) ¶(elem)

Loại bỏ phần tử ELEM khỏi tập hợp. Tăng

str(somestring, 'UTF8')
483 nếu ELEM không có trong tập hợp.

________ 1484 (elem) ¶(elem)

Loại bỏ phần tử ELEM khỏi tập hợp nếu nó có mặt.

________ 1485 ()()

Xóa và trả về một phần tử tùy ý khỏi tập hợp. Tăng

str(somestring, 'UTF8')
483 nếu bộ trống.

________ 1487 ()()

Loại bỏ tất cả các phần tử khỏi tập hợp.

Lưu ý, các phiên bản không vận hành của

str(somestring, 'UTF8')
488,
str(somestring, 'UTF8')
489,
str(somestring, 'UTF8')
490 và
str(somestring, 'UTF8')
491 sẽ chấp nhận bất kỳ đối số nào.

Lưu ý, đối số ELEM cho các phương thức

str(somestring, 'UTF8')
99,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
20 và
str(somestring, 'UTF8')
494 có thể là một tập hợp. Để hỗ trợ tìm kiếm một chiếc Frozenset tương đương, một cái tạm thời được tạo ra từ ELEM.

Các loại ánh xạ - ________ 487¶

Một bản đồ đối tượng ánh xạ các giá trị băm vào các đối tượng tùy ý. Ánh xạ là các đối tượng có thể thay đổi. Hiện tại chỉ có một loại ánh xạ tiêu chuẩn, từ điển. .mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only one standard mapping type, the dictionary. (For other containers see the built-in

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
12,
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
88, and
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
13 classes, and the
str(somestring, 'UTF8')
403 module.)

Một phím từ điển từ các giá trị gần như tùy ý. Các giá trị không thể băm, nghĩa là các giá trị chứa danh sách, từ điển hoặc các loại có thể thay đổi khác (được so sánh theo giá trị thay vì nhận dạng đối tượng) không được sử dụng làm khóa. Các loại số được sử dụng cho các khóa tuân thủ các quy tắc thông thường để so sánh số: nếu hai số so sánh bằng nhau (chẳng hạn như

str(somestring, 'UTF8')
54 và
str(somestring, 'UTF8')
501) thì chúng có thể được sử dụng thay thế cho nhau để lập chỉ mục cùng một mục từ điển. (Tuy nhiên, lưu ý rằng vì các máy tính lưu trữ các số điểm nổi dưới dạng xấp xỉ, thường không khôn ngoan khi sử dụng chúng làm khóa từ điển.)hashable, that is, values containing lists, dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (such as
str(somestring, 'UTF8')
54 and
str(somestring, 'UTF8')
501) then they can be used interchangeably to index the same dictionary entry. (Note however, that since computers store floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

Lớp ________ 1502 (** kwargs) ¶ Class ________ 1502 (ánh xạ, ** kwargs) Lớp ____ 1502 (có thể sử dụng được, ** kwargs)(**kwargs)¶ class
str(somestring, 'UTF8')
502(mapping, **kwargs) class
str(somestring, 'UTF8')
502(iterable, **kwargs)

Trả về một từ điển mới được khởi tạo từ một đối số vị trí tùy chọn và một tập hợp các đối số từ khóa có thể trống.

Từ điển có thể được tạo bằng một số phương tiện:

  • Sử dụng danh sách các cặp

    str(somestring, 'UTF8')
    
    505 được phân tách bằng dấu phẩy trong niềng răng:
    str(somestring, 'UTF8')
    
    506 hoặc
    str(somestring, 'UTF8')
    
    507

  • Sử dụng sự hiểu biết chính thống:

    str(somestring, 'UTF8')
    
    49,
    str(somestring, 'UTF8')
    
    509

  • Sử dụng hàm tạo loại:

    str(somestring, 'UTF8')
    
    510,
    str(somestring, 'UTF8')
    
    511,
    str(somestring, 'UTF8')
    
    512

Nếu không có đối số vị trí nào được đưa ra, một từ điển trống được tạo. Nếu một đối số vị trí được đưa ra và nó là một đối tượng ánh xạ, một từ điển được tạo với cùng các cặp giá trị khóa như đối tượng ánh xạ. Nếu không, đối số vị trí phải là một đối tượng có thể lặp lại. Mỗi mục trong Iterable phải tự nó là một đối tượng chính xác với hai đối tượng. Đối tượng đầu tiên của mỗi mục trở thành một khóa trong từ điển mới và đối tượng thứ hai là giá trị tương ứng. Nếu một khóa xảy ra nhiều lần, giá trị cuối cùng cho khóa đó trở thành giá trị tương ứng trong từ điển mới.iterable object. Each item in the iterable must itself be an iterable with exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding value in the new dictionary.

Nếu các đối số từ khóa được đưa ra, các đối số từ khóa và giá trị của chúng được thêm vào từ điển được tạo từ đối số vị trí. Nếu một khóa được thêm vào đã có mặt, giá trị từ đối số từ khóa sẽ thay thế giá trị từ đối số vị trí.

Để minh họa, tất cả các ví dụ sau đều trả về từ điển bằng

str(somestring, 'UTF8')
513:

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
9

Cung cấp các đối số từ khóa như trong ví dụ đầu tiên chỉ hoạt động cho các khóa là định danh python hợp lệ. Nếu không, bất kỳ khóa hợp lệ nào cũng có thể được sử dụng.

Đây là các hoạt động mà từ điển hỗ trợ (và do đó, các loại ánh xạ tùy chỉnh cũng sẽ hỗ trợ):

str(somestring, 'UTF8')
514

Trả về một danh sách tất cả các khóa được sử dụng trong từ điển d.

str(somestring, 'UTF8')
515

Trả lại số lượng các mục trong từ điển d.

str(somestring, 'UTF8')
516

Trả lại mục của D với khóa khóa. Tăng

str(somestring, 'UTF8')
483 nếu khóa không có trong bản đồ.

Nếu một lớp con của dict định nghĩa một phương thức

str(somestring, 'UTF8')
518 và không có khóa, thì hoạt động
str(somestring, 'UTF8')
519 sẽ gọi phương thức đó với khóa khóa làm đối số. Hoạt động
str(somestring, 'UTF8')
519 sau đó trả về hoặc tăng bất cứ thứ gì được trả lại hoặc tăng lên bởi cuộc gọi
str(somestring, 'UTF8')
521. Không có hoạt động hoặc phương pháp nào khác gọi
str(somestring, 'UTF8')
518. Nếu
str(somestring, 'UTF8')
518 không được xác định,
str(somestring, 'UTF8')
483 sẽ được nâng lên.
str(somestring, 'UTF8')
518 phải là một phương pháp; Nó không thể là một biến thể hiện:

str(somestring, 'UTF8')
00

Ví dụ trên cho thấy một phần của việc thực hiện

str(somestring, 'UTF8')
526. Một phương pháp
str(somestring, 'UTF8')
527 khác nhau được sử dụng bởi
str(somestring, 'UTF8')
528.

str(somestring, 'UTF8')
529

Đặt

str(somestring, 'UTF8')
519 thành Giá trị.

str(somestring, 'UTF8')
531

Hủy bỏ

str(somestring, 'UTF8')
519 khỏi d. Tăng
str(somestring, 'UTF8')
483 nếu khóa không có trong bản đồ.

str(somestring, 'UTF8')
534

Trả về

str(somestring, 'UTF8')
55 Nếu D có khóa khóa, nếu không
str(somestring, 'UTF8')
37.

str(somestring, 'UTF8')
537

Tương đương với

str(somestring, 'UTF8')
538.

str(somestring, 'UTF8')
539

Trả lại một trình lặp qua các khóa của từ điển. Đây là một lối tắt cho

str(somestring, 'UTF8')
540.

________ 1487 ()()

Hủy bỏ tất cả các mục khỏi từ điển.

________ 1446 ()()

Trả lại một bản sao nông của từ điển.

ClassMethod ________ 1543 (Itable [, value]) ¶(iterable[, value])

Tạo một từ điển mới với các khóa từ Itable và các giá trị được đặt thành giá trị.

str(somestring, 'UTF8')
544 là một phương pháp lớp trả về một từ điển mới. Giá trị mặc định là
str(somestring, 'UTF8')
30. Tất cả các giá trị chỉ đề cập đến một trường hợp duy nhất, do đó, nó thường không có ý nghĩa đối với giá trị là một đối tượng có thể thay đổi như một danh sách trống. Để có được các giá trị khác biệt, thay vào đó hãy sử dụng sự hiểu biết của Dict.dict comprehension instead.

________ 1546 (khóa [, mặc định]) ¶(key[, default])

Trả về giá trị cho khóa nếu có trong từ điển, mặc định khác. Nếu mặc định không được đưa ra, nó mặc định là

str(somestring, 'UTF8')
30, do đó phương thức này không bao giờ tăng
str(somestring, 'UTF8')
483.

________ 1549 ()()

Trả về một cái nhìn mới về các mục từ điển (

str(somestring, 'UTF8')
550 cặp). Xem tài liệu của các đối tượng xem.documentation of view objects.

________ 1551 ()()

Trả lại một cái nhìn mới về các khóa từ điển. Xem tài liệu của các đối tượng xem.documentation of view objects.

________ 1485 (khóa [, mặc định]) ¶(key[, default])

Nếu khóa nằm trong từ điển, hãy xóa nó và trả về giá trị của nó, khác trả về mặc định. Nếu mặc định không được đưa ra và khóa không có trong từ điển,

str(somestring, 'UTF8')
483 sẽ được nâng lên.

________ 1554 ()()

Hủy bỏ và trả về một cặp

str(somestring, 'UTF8')
550 khỏi từ điển. Các cặp được trả lại theo thứ tự LIFO.

str(somestring, 'UTF8')
556 rất hữu ích để lặp lại một cách phá hủy trên một từ điển, như thường được sử dụng trong các thuật toán đã đặt. Nếu từ điển trống, gọi
str(somestring, 'UTF8')
556 sẽ tăng
str(somestring, 'UTF8')
483.

Đã thay đổi trong phiên bản 3.7: Thứ tự LIFO hiện được đảm bảo. Trong các phiên bản trước,

str(somestring, 'UTF8')
556 sẽ trả về một cặp khóa/giá trị tùy ý.LIFO order is now guaranteed. In prior versions,
str(somestring, 'UTF8')
556 would return an arbitrary key/value pair.

str(somestring, 'UTF8')
560

Trả lại một trình lặp ngược qua các khóa của từ điển. Đây là một lối tắt cho

str(somestring, 'UTF8')
561.

Mới trong phiên bản 3.8.

________ 1562 (khóa [, mặc định]) ¶(key[, default])

Nếu khóa nằm trong từ điển, hãy trả về giá trị của nó. Nếu không, chèn phím với giá trị mặc định và trả về mặc định. Mặc định mặc định là

str(somestring, 'UTF8')
30.

________ 1473 ([Khác])([other])

Cập nhật từ điển với các cặp khóa/giá trị từ các khóa hiện có, ghi đè lên. Trả lại

str(somestring, 'UTF8')
30.

str(somestring, 'UTF8')
488 chấp nhận một đối tượng từ điển khác hoặc có thể lặp lại của các cặp khóa/giá trị (như bộ dữ liệu hoặc các vòng lặp khác có độ dài hai). Nếu các đối số từ khóa được chỉ định, từ điển sau đó được cập nhật với các cặp khóa/giá trị đó:
str(somestring, 'UTF8')
567.

________ 1568 ()()

Trả về một cái nhìn mới về các giá trị từ điển. Xem tài liệu của các đối tượng xem.documentation of view objects.

Một so sánh bình đẳng giữa một chế độ xem

str(somestring, 'UTF8')
569 và một chế độ khác sẽ luôn quay trở lại
str(somestring, 'UTF8')
37. Điều này cũng áp dụng khi so sánh
str(somestring, 'UTF8')
569 với chính nó:

str(somestring, 'UTF8')
01

str(somestring, 'UTF8')
572

Tạo một từ điển mới với các khóa và giá trị được hợp nhất của D và khác, cả hai đều phải là từ điển. Các giá trị của sự ưu tiên khác khi D và các khóa chia sẻ khác.

Mới trong phiên bản 3.9.

str(somestring, 'UTF8')
573

Cập nhật từ điển D với các khóa và giá trị từ khác, có thể là ánh xạ hoặc có thể lặp lại các cặp khóa/giá trị. Các giá trị của sự ưu tiên khác khi D và các khóa chia sẻ khác.mapping or an iterable of key/value pairs. The values of other take priority when d and other share keys.

Mới trong phiên bản 3.9.

str(somestring, 'UTF8')
573

Cập nhật từ điển D với các khóa và giá trị từ khác, có thể là ánh xạ hoặc có thể lặp lại các cặp khóa/giá trị. Các giá trị của sự ưu tiên khác khi D và các khóa chia sẻ khác.

str(somestring, 'UTF8')
02

Từ điển so sánh bằng nhau khi và chỉ khi chúng có cùng cặp

str(somestring, 'UTF8')
574 (bất kể đặt hàng). So sánh đơn hàng (‘) tăng
str(somestring, 'UTF8')
87.Dictionary order is guaranteed to be insertion order. This behavior was an implementation detail of CPython from 3.6.

Từ điển bảo tồn thứ tự chèn. Lưu ý rằng việc cập nhật khóa không ảnh hưởng đến thứ tự. Các khóa được thêm vào sau khi xóa được chèn vào cuối.

str(somestring, 'UTF8')
03

Thay đổi trong phiên bản 3.8: Từ điển hiện có thể đảo ngược.Dictionaries are now reversible.

View Dictionary View Object;

Các đối tượng được trả về bởi

str(somestring, 'UTF8')
576,
str(somestring, 'UTF8')
569 và
str(somestring, 'UTF8')
578 là các đối tượng xem. Chúng cung cấp một cái nhìn động trên các mục từ điển, điều đó có nghĩa là khi từ điển thay đổi, quan điểm phản ánh những thay đổi này.

Các chế độ xem từ điển có thể được lặp lại để mang lại dữ liệu tương ứng của họ và hỗ trợ các bài kiểm tra thành viên:

str(somestring, 'UTF8')
579

Trả lại số lượng mục trong từ điển.

str(somestring, 'UTF8')
580

Trả về một trình lặp qua các khóa, giá trị hoặc mục (được biểu thị dưới dạng các bộ dữ liệu của

str(somestring, 'UTF8')
550) trong từ điển.

Các khóa và giá trị được lặp lại theo thứ tự chèn. Điều này cho phép tạo các cặp

str(somestring, 'UTF8')
582 bằng cách sử dụng
str(somestring, 'UTF8')
583:
str(somestring, 'UTF8')
584. Một cách khác để tạo cùng một danh sách là
str(somestring, 'UTF8')
585.

Lặp lại các chế độ xem trong khi thêm hoặc xóa các mục trong từ điển có thể tăng

str(somestring, 'UTF8')
586 hoặc không lặp lại tất cả các mục.

Thay đổi trong phiên bản 3.7: Thứ tự từ điển được đảm bảo là thứ tự chèn.Dictionary order is guaranteed to be insertion order.

str(somestring, 'UTF8')
587

Trả về

str(somestring, 'UTF8')
55 Nếu X nằm trong các khóa, giá trị hoặc mục từ điển cơ bản (trong trường hợp sau, X nên là một bộ
str(somestring, 'UTF8')
550).

str(somestring, 'UTF8')
590

Trả về một trình lặp ngược qua các khóa, giá trị hoặc mục của từ điển. Quan điểm sẽ được lặp lại theo thứ tự ngược của chèn.

Đã thay đổi trong phiên bản 3.8: Quan điểm từ điển hiện có thể đảo ngược.Dictionary views are now reversible.

str(somestring, 'UTF8')
591

Trả về một

str(somestring, 'UTF8')
592 kết thúc từ điển ban đầu mà chế độ xem đề cập.

Mới trong phiên bản 3.10.

Các chế độ xem khóa được đặt giống như các mục của chúng là duy nhất và có thể băm. Nếu tất cả các giá trị có thể băm, do đó các cặp

str(somestring, 'UTF8')
550 là duy nhất và có thể băm, thì chế độ xem các mục cũng giống như được đặt. .

Một ví dụ về cách sử dụng từ điển xem:

str(somestring, 'UTF8')
04

Trình quản lý bối cảnh Loại

Tuyên bố Python từ

str(somestring, 'UTF8')
372 hỗ trợ khái niệm về bối cảnh thời gian chạy được xác định bởi người quản lý bối cảnh. Điều này được triển khai bằng cách sử dụng một cặp phương thức cho phép các lớp do người dùng xác định xác định bối cảnh thời gian chạy được nhập trước khi phần thân câu lệnh được thực thi và thoát khi câu lệnh kết thúc:

________ 1599 ________ 1600 ()()

Nhập bối cảnh thời gian chạy và trả về đối tượng này hoặc đối tượng khác liên quan đến bối cảnh thời gian chạy. Giá trị được trả về bởi phương thức này được liên kết với định danh trong mệnh đề

str(somestring, 'UTF8')
601 của các câu lệnh
str(somestring, 'UTF8')
372 bằng cách sử dụng trình quản lý ngữ cảnh này.

Một ví dụ về trình quản lý bối cảnh tự trả về là một đối tượng tệp. Các đối tượng tệp tự trả lại từ __NENTER __ () để cho phép

str(somestring, 'UTF8')
603 được sử dụng làm biểu thức ngữ cảnh trong câu lệnh
str(somestring, 'UTF8')
372.file object. File objects return themselves from __enter__() to allow
str(somestring, 'UTF8')
603 to be used as the context expression in a
str(somestring, 'UTF8')
372 statement.

Một ví dụ về Trình quản lý bối cảnh trả về một đối tượng liên quan là một đối tượng được trả về bởi

str(somestring, 'UTF8')
605. Các nhà quản lý này đặt bối cảnh thập phân chủ động thành một bản sao của bối cảnh thập phân gốc và sau đó trả lại bản sao. Điều này cho phép các thay đổi được thực hiện theo bối cảnh thập phân hiện tại trong phần thân của tuyên bố
str(somestring, 'UTF8')
372 mà không ảnh hưởng đến mã bên ngoài câu lệnh
str(somestring, 'UTF8')
372.

________ 1599 ________ 1609 (exc_type, exc_val, exc_tb) ¶(exc_type, exc_val, exc_tb)

Thoát khỏi bối cảnh thời gian chạy và trả lại cờ Boolean cho biết nếu có bất kỳ ngoại lệ nào xảy ra nên bị triệt tiêu. Nếu một ngoại lệ xảy ra trong khi thực hiện phần thân của câu lệnh

str(somestring, 'UTF8')
372, các đối số chứa loại ngoại lệ, giá trị và thông tin theo dõi. Mặt khác, cả ba đối số là
str(somestring, 'UTF8')
30.

Trả về một giá trị thực từ phương thức này sẽ khiến câu lệnh

str(somestring, 'UTF8')
372 triệt tiêu ngoại lệ và tiếp tục thực thi với câu lệnh ngay sau câu lệnh
str(somestring, 'UTF8')
372. Nếu không, ngoại lệ tiếp tục lan truyền sau khi phương pháp này đã hoàn tất việc thực hiện. Các ngoại lệ xảy ra trong quá trình thực hiện phương pháp này sẽ thay thế bất kỳ ngoại lệ nào xảy ra trong phần thân của câu lệnh
str(somestring, 'UTF8')
372.

Ngoại lệ được thông qua không bao giờ nên được đọc lại một cách rõ ràng - thay vào đó, phương pháp này sẽ trả về một giá trị sai để chỉ ra rằng phương pháp đã hoàn thành thành công và không muốn triệt tiêu ngoại lệ được nâng lên. Điều này cho phép mã quản lý ngữ cảnh dễ dàng phát hiện xem phương thức

str(somestring, 'UTF8')
615 có thực sự thất bại hay không.

Python xác định một số người quản lý bối cảnh để hỗ trợ đồng bộ hóa luồng dễ dàng, đóng nhanh các tệp hoặc các đối tượng khác và thao tác đơn giản hơn về bối cảnh số học thập phân hoạt động. Các loại cụ thể không được đối xử đặc biệt ngoài việc thực hiện giao thức quản lý bối cảnh. Xem mô -đun

str(somestring, 'UTF8')
616 cho một số ví dụ.

Máy phát điện Python và máy trang trí

str(somestring, 'UTF8')
617 cung cấp một cách thuận tiện để thực hiện các giao thức này. Nếu một hàm máy phát được trang trí với trình trang trí
str(somestring, 'UTF8')
617, nó sẽ trả về một trình quản lý bối cảnh thực hiện các phương thức
str(somestring, 'UTF8')
619 và
str(somestring, 'UTF8')
615 cần thiết, thay vì trình lặp được tạo ra bởi hàm tạo máy phát không được trang bị.generators and the
str(somestring, 'UTF8')
617 decorator provide a convenient way to implement these protocols. If a generator function is decorated with the
str(somestring, 'UTF8')
617 decorator, it will return a context manager implementing the necessary
str(somestring, 'UTF8')
619 and
str(somestring, 'UTF8')
615 methods, rather than the iterator produced by an undecorated generator function.

Lưu ý rằng không có khe cắm cụ thể nào cho bất kỳ phương pháp nào trong cấu trúc loại cho các đối tượng Python trong API Python/C. Các loại mở rộng muốn xác định các phương pháp này phải cung cấp cho chúng như một phương thức có thể truy cập Python bình thường. So với chi phí của việc thiết lập bối cảnh thời gian chạy, chi phí của một tra cứu từ điển lớp là không đáng kể.

Loại chú thích các loại - Bí danh chung, Union¶Generic Alias, Union¶

Các loại tích hợp cốt lõi cho các chú thích loại là bí danh chung và liên minh.type annotations are Generic Alias and Union.

Bí danh chung Loại

Các đối tượng

str(somestring, 'UTF8')
621 thường được tạo bằng cách đăng ký một lớp. Chúng thường được sử dụng với các lớp container, chẳng hạn như
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
12 hoặc
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
87. Ví dụ:
str(somestring, 'UTF8')
624 là đối tượng
str(somestring, 'UTF8')
621 được tạo bằng cách đăng ký lớp
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
12 với đối số
somestring.strip()
00. Các đối tượng
str(somestring, 'UTF8')
621 được dự định chủ yếu để sử dụng với các chú thích loại.subscripting a class. They are most often used with container classes, such as
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
12 or
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
87. For example,
str(somestring, 'UTF8')
624 is a
str(somestring, 'UTF8')
621 object created by subscripting the
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
12 class with the argument
somestring.strip()
00.
str(somestring, 'UTF8')
621 objects are intended primarily for use with type annotations.

Ghi chú

Nhìn chung chỉ có thể đăng ký một lớp nếu lớp thực hiện phương pháp đặc biệt

str(somestring, 'UTF8')
629.

Đối tượng

str(somestring, 'UTF8')
621 hoạt động như một proxy cho một loại chung, thực hiện các thuốc generic được tham số hóa.generic type, implementing parameterized generics.

Đối với một lớp container, (các) đối số được cung cấp cho một thuê bao của lớp có thể chỉ ra loại (các) các phần tử mà một đối tượng chứa. Ví dụ,

str(somestring, 'UTF8')
631 có thể được sử dụng trong các chú thích loại để biểu thị
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
88 trong đó tất cả các yếu tố thuộc loại
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42.subscription of the class may indicate the type(s) of the elements an object contains. For example,
str(somestring, 'UTF8')
631 can be used in type annotations to signify a
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
88 in which all the elements are of type
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42.

Đối với một lớp xác định

str(somestring, 'UTF8')
629 nhưng không phải là container, (các) đối số được cung cấp cho đăng ký của lớp thường sẽ chỉ ra loại trả về của một hoặc nhiều phương thức được xác định trên một đối tượng. Ví dụ:
str(somestring, 'UTF8')
635 có thể được sử dụng trên cả loại dữ liệu
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
41 và kiểu dữ liệu
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42:

  • Nếu

    str(somestring, 'UTF8')
    
    638,
    somestring.strip()
    
    84 sẽ là đối tượng Re.Match trong đó các giá trị trả về của
    str(somestring, 'UTF8')
    
    640 và
    str(somestring, 'UTF8')
    
    641 sẽ cả hai loại
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    41. Chúng ta có thể đại diện cho loại đối tượng này trong các chú thích loại với
    str(somestring, 'UTF8')
    
    621
    str(somestring, 'UTF8')
    
    644.re.Match object where the return values of
    str(somestring, 'UTF8')
    
    640 and
    str(somestring, 'UTF8')
    
    641 will both be of type
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    41. We can represent this kind of object in type annotations with the
    str(somestring, 'UTF8')
    
    621
    str(somestring, 'UTF8')
    
    644.

  • Nếu

    str(somestring, 'UTF8')
    
    645, (lưu ý
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    70 cho
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    42),
    from string import strip
    
    44 cũng sẽ là một ví dụ của
    str(somestring, 'UTF8')
    
    649, nhưng các giá trị trả về của
    str(somestring, 'UTF8')
    
    650 và
    str(somestring, 'UTF8')
    
    651 sẽ cả hai đều thuộc loại
    >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    42. Trong các chú thích loại, chúng tôi sẽ đại diện cho sự đa dạng của các đối tượng RE.match này với
    str(somestring, 'UTF8')
    
    653.re.Match objects with
    str(somestring, 'UTF8')
    
    653.

Các đối tượng

str(somestring, 'UTF8')
621 là các trường hợp của lớp
str(somestring, 'UTF8')
655, cũng có thể được sử dụng để tạo trực tiếp các đối tượng
str(somestring, 'UTF8')
621.

str(somestring, 'UTF8')
657

Tạo một

str(somestring, 'UTF8')
621 đại diện cho loại
str(somestring, 'UTF8')
659 được tham số hóa theo loại X, Y và nhiều hơn tùy thuộc vào
str(somestring, 'UTF8')
659 được sử dụng. Ví dụ: một hàm mong đợi một
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
12 chứa các yếu tố
somestring.strip()
01:

str(somestring, 'UTF8')
05

Một ví dụ khác để ánh xạ các đối tượng, sử dụng

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
87, đây là loại chung mong đợi hai tham số loại đại diện cho loại khóa và loại giá trị. Trong ví dụ này, hàm này mong đợi một
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
87 với các khóa loại
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
41 và các giá trị của loại
somestring.strip()
00:mapping objects, using a
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
87, which is a generic type expecting two type parameters representing the key type and the value type. In this example, the function expects a
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
87 with keys of type
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
41 and values of type
somestring.strip()
00:

str(somestring, 'UTF8')
06

Các chức năng tích hợp

str(somestring, 'UTF8')
667 và
str(somestring, 'UTF8')
668 không chấp nhận các loại
str(somestring, 'UTF8')
621 cho đối số thứ hai của họ:

str(somestring, 'UTF8')
07

Thời gian chạy Python không thực thi các chú thích loại. Điều này mở rộng sang các loại chung và các tham số loại của chúng. Khi tạo một đối tượng container từ

str(somestring, 'UTF8')
621, các phần tử trong thùng chứa không được kiểm tra so với loại của chúng. Ví dụ: mã sau không được khuyến khích, nhưng sẽ chạy mà không có lỗi:type annotations. This extends to generic types and their type parameters. When creating a container object from a
str(somestring, 'UTF8')
621, the elements in the container are not checked against their type. For example, the following code is discouraged, but will run without errors:

str(somestring, 'UTF8')
08

Hơn nữa, các tham số loại thuốc generic được tham số hóa trong quá trình tạo đối tượng:

str(somestring, 'UTF8')
09

Gọi

str(somestring, 'UTF8')
31 hoặc
str(somestring, 'UTF8')
32 trên một loại chung hiển thị loại tham số hóa:

str(somestring, 'UTF8')
10

Phương pháp

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
87 của các thùng chứa chung sẽ gây ra ngoại lệ đối với các lỗi không cho phép như
str(somestring, 'UTF8')
674:

str(somestring, 'UTF8')
11

Tuy nhiên, các biểu thức như vậy là hợp lệ khi các biến loại được sử dụng. Chỉ mục phải có nhiều yếu tố như có các mục biến loại trong đối tượng

str(somestring, 'UTF8')
621
str(somestring, 'UTF8')
676.type variables are used. The index must have as many elements as there are type variable items in the
str(somestring, 'UTF8')
621 object’s
str(somestring, 'UTF8')
676.

str(somestring, 'UTF8')
12

Các lớp học chung tiêu chuẩn

Các lớp thư viện tiêu chuẩn sau đây hỗ trợ các thuốc generic được tham số hóa. Danh sách này là không khởi công.

  • >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    13

  • >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    12

  • >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    87

  • >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    88

  • >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    89

  • str(somestring, 'UTF8')
    
    682

  • str(somestring, 'UTF8')
    
    683

  • str(somestring, 'UTF8')
    
    528

  • str(somestring, 'UTF8')
    
    685

  • str(somestring, 'UTF8')
    
    526

  • str(somestring, 'UTF8')
    
    687

  • str(somestring, 'UTF8')
    
    688

  • str(somestring, 'UTF8')
    
    689

  • str(somestring, 'UTF8')
    
    690

  • str(somestring, 'UTF8')
    
    691

  • str(somestring, 'UTF8')
    
    692

  • str(somestring, 'UTF8')
    
    693

  • str(somestring, 'UTF8')
    
    694

  • str(somestring, 'UTF8')
    
    695

  • str(somestring, 'UTF8')
    
    696

  • str(somestring, 'UTF8')
    
    697

  • str(somestring, 'UTF8')
    
    698

  • str(somestring, 'UTF8')
    
    699

  • str(somestring, 'UTF8')
    
    594

  • str(somestring, 'UTF8')
    
    701

  • str(somestring, 'UTF8')
    
    702

  • str(somestring, 'UTF8')
    
    703

  • >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    15

  • >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    91

  • str(somestring, 'UTF8')
    
    706

  • str(somestring, 'UTF8')
    
    707

  • str(somestring, 'UTF8')
    
    708

  • str(somestring, 'UTF8')
    
    709

  • str(somestring, 'UTF8')
    
    710

  • str(somestring, 'UTF8')
    
    711

  • str(somestring, 'UTF8')
    
    712

  • str(somestring, 'UTF8')
    
    713

  • str(somestring, 'UTF8')
    
    714

  • str(somestring, 'UTF8')
    
    715

  • str(somestring, 'UTF8')
    
    716

  • str(somestring, 'UTF8')
    
    717

  • str(somestring, 'UTF8')
    
    718

  • str(somestring, 'UTF8')
    
    719

  • str(somestring, 'UTF8')
    
    720

  • re.Pattern

  • re.Match

  • str(somestring, 'UTF8')
    
    721

  • str(somestring, 'UTF8')
    
    722

  • str(somestring, 'UTF8')
    
    723

  • str(somestring, 'UTF8')
    
    592

  • str(somestring, 'UTF8')
    
    725

  • str(somestring, 'UTF8')
    
    726

  • str(somestring, 'UTF8')
    
    727

  • str(somestring, 'UTF8')
    
    728

Các thuộc tính đặc biệt của
str(somestring, 'UTF8')
621 Đối tượng

Tất cả các chung chung tham số thực hiện các thuộc tính chỉ đọc đặc biệt.

________ 1730 ________ 1731¶

Thuộc tính này chỉ vào lớp chung không tham số:

str(somestring, 'UTF8')
13

________ 1730 ________ 1733¶

Thuộc tính này là một

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
13 (có thể là độ dài 1) của các loại chung được truyền cho
str(somestring, 'UTF8')
629 ban đầu của lớp chung:

str(somestring, 'UTF8')
14

________ 1730 ________ 1737¶

Thuộc tính này là một tuple được tính toán một cách lười biếng (có thể trống) của các biến loại duy nhất được tìm thấy trong

str(somestring, 'UTF8')
676:

str(somestring, 'UTF8')
15

Ghi chú

Một đối tượng

str(somestring, 'UTF8')
621 với các tham số
str(somestring, 'UTF8')
740 có thể không chính xác
str(somestring, 'UTF8')
741 sau khi thay thế vì
str(somestring, 'UTF8')
740 chủ yếu nhằm kiểm tra loại tĩnh.

Xem thêm

PEP 484 - Loại gợi ý - Type Hints

Giới thiệu khung Python sườn cho các chú thích loại.

PEP 585 - Loại Generics Generics trong các bộ sưu tập tiêu chuẩn - Type Hinting Generics In Standard Collections

Giới thiệu khả năng tham số hóa các lớp thư viện tiêu chuẩn, miễn là họ thực hiện phương pháp lớp đặc biệt

str(somestring, 'UTF8')
629.

Generics, Generics do người dùng định nghĩa và
str(somestring, 'UTF8')
744
, user-defined generics and
str(somestring, 'UTF8')
744

Tài liệu về cách thực hiện các lớp chung có thể được tham số hóa trong thời gian chạy và được hiểu bởi các trình kiểm tra loại tĩnh.

Mới trong phiên bản 3.9.

Loại Liên minh

Một đối tượng Union giữ giá trị của hoạt động

str(somestring, 'UTF8')
745 (bitwise hoặc) trên nhiều đối tượng loại. Những loại này được dự định chủ yếu cho các chú thích loại. Biểu thức loại liên minh cho phép loại cú pháp gợi ý loại sạch hơn so với
str(somestring, 'UTF8')
746.type objects. These types are intended primarily for type annotations. The union type expression enables cleaner type hinting syntax compared to
str(somestring, 'UTF8')
746.

str(somestring, 'UTF8')
747

Xác định một đối tượng Liên minh giữ các loại X, Y, v.v.

str(somestring, 'UTF8')
748 có nghĩa là X hoặc Y. Nó tương đương với
str(somestring, 'UTF8')
749. Ví dụ: chức năng sau đây mong đợi một đối số của loại
somestring.strip()
00 hoặc
somestring.strip()
01:

str(somestring, 'UTF8')
16

str(somestring, 'UTF8')
752

Các đối tượng Liên minh có thể được kiểm tra sự bình đẳng với các đối tượng liên minh khác. Thông tin chi tiết:

  • Các công đoàn bị san phẳng:

    str(somestring, 'UTF8')
    
    17

  • Các loại dự phòng đã bị xóa:

    str(somestring, 'UTF8')
    
    18

  • Khi so sánh các công đoàn, thứ tự bị bỏ qua:

  • Nó tương thích với

    str(somestring, 'UTF8')
    
    746:

    str(somestring, 'UTF8')
    
    19

  • Các loại tùy chọn có thể được đánh vần là một liên minh với

    str(somestring, 'UTF8')
    
    30:

    str(somestring, 'UTF8')
    
    20

str(somestring, 'UTF8')
755
str(somestring, 'UTF8')
756

Các cuộc gọi đến

str(somestring, 'UTF8')
667 và
str(somestring, 'UTF8')
668 cũng được hỗ trợ với một đối tượng Liên minh:

str(somestring, 'UTF8')
21

Tuy nhiên, không thể sử dụng các đối tượng liên minh chứa chung chung được tham số:parameterized generics cannot be used:

str(somestring, 'UTF8')
22

Loại tiếp xúc với người dùng cho đối tượng Liên minh có thể được truy cập từ

str(somestring, 'UTF8')
759 và được sử dụng để kiểm tra
str(somestring, 'UTF8')
667. Một đối tượng không thể được khởi tạo từ loại:

str(somestring, 'UTF8')
23

Ghi chú

Một đối tượng

str(somestring, 'UTF8')
621 với các tham số
str(somestring, 'UTF8')
740 có thể không chính xác
str(somestring, 'UTF8')
741 sau khi thay thế vì
str(somestring, 'UTF8')
740 chủ yếu nhằm kiểm tra loại tĩnh.

str(somestring, 'UTF8')
24

Xem thêm

PEP 484 - Loại gợi ý – PEP proposing the

str(somestring, 'UTF8')
748 syntax and the Union type.

Giới thiệu khung Python sườn cho các chú thích loại.

PEP 585 - Loại Generics Generics trong các bộ sưu tập tiêu chuẩn

Giới thiệu khả năng tham số hóa các lớp thư viện tiêu chuẩn, miễn là họ thực hiện phương pháp lớp đặc biệt

str(somestring, 'UTF8')
629.

Generics, Generics do người dùng định nghĩa và str(somestring, 'UTF8') 744

Tài liệu về cách thực hiện các lớp chung có thể được tham số hóa trong thời gian chạy và được hiểu bởi các trình kiểm tra loại tĩnh.

Mới trong phiên bản 3.9.

Loại Liên minh

Một đối tượng Union giữ giá trị của hoạt động str(somestring, 'UTF8') 745 (bitwise hoặc) trên nhiều đối tượng loại. Những loại này được dự định chủ yếu cho các chú thích loại. Biểu thức loại liên minh cho phép loại cú pháp gợi ý loại sạch hơn so với str(somestring, 'UTF8') 746.

str(somestring, 'UTF8')
747Objects, values and types and Class definitions for these.

Xác định một đối tượng Liên minh giữ các loại X, Y, v.v. str(somestring, 'UTF8') 748 có nghĩa là X hoặc Y. Nó tương đương với str(somestring, 'UTF8') 749. Ví dụ: chức năng sau đây mong đợi một đối số của loại somestring.strip() 00 hoặc somestring.strip() 01:

str(somestring, 'UTF8')
752

Các đối tượng Liên minh có thể được kiểm tra sự bình đẳng với các đối tượng liên minh khác. Thông tin chi tiết:

Các công đoàn bị san phẳng:Function definitions for more information.

Phương pháp bình

Các phương thức là các hàm được gọi bằng cách sử dụng ký hiệu thuộc tính. Có hai hương vị: các phương thức tích hợp (như

str(somestring, 'UTF8')
778 trên danh sách) và phương thức thể hiện lớp. Các phương pháp tích hợp được mô tả với các loại hỗ trợ chúng.

Nếu bạn truy cập một phương thức (một hàm được xác định trong không gian tên lớp) thông qua một thể hiện, bạn sẽ nhận được một đối tượng đặc biệt: một phương thức ràng buộc (còn gọi là phương thức thể hiện) đối tượng. Khi được gọi, nó sẽ thêm đối số

str(somestring, 'UTF8')
779 vào danh sách đối số. Các phương thức ràng buộc có hai thuộc tính chỉ đọc đặc biệt:
str(somestring, 'UTF8')
780 là đối tượng mà phương thức hoạt động và
str(somestring, 'UTF8')
781 là chức năng thực hiện phương thức. Gọi
str(somestring, 'UTF8')
782 hoàn toàn tương đương với việc gọi
str(somestring, 'UTF8')
783.

Giống như các đối tượng chức năng, các đối tượng phương thức ràng buộc hỗ trợ nhận các thuộc tính tùy ý. Tuy nhiên, vì các thuộc tính phương thức thực sự được lưu trữ trên đối tượng hàm cơ bản (

str(somestring, 'UTF8')
784), nên việc thiết lập các thuộc tính phương thức trên các phương thức bị ràng buộc không được phép. Cố gắng đặt một thuộc tính trên một phương thức dẫn đến một
str(somestring, 'UTF8')
785 đang được nâng lên. Để đặt thuộc tính phương thức, bạn cần đặt nó một cách rõ ràng trên đối tượng hàm cơ bản:

str(somestring, 'UTF8')
25

Xem hệ thống phân cấp loại tiêu chuẩn để biết thêm thông tin.The standard type hierarchy for more information.

Mã đối tượng

Các đối tượng mã được sử dụng bởi việc triển khai để thể hiện mã Python thực thi của Pseudo được biên dịch bằng cách sử dụng như một cơ thể chức năng. Chúng khác với các đối tượng chức năng vì chúng không chứa một tham chiếu đến môi trường thực hiện toàn cầu của chúng. Các đối tượng mã được trả về bởi hàm

str(somestring, 'UTF8')
786 tích hợp và có thể được trích xuất từ ​​các đối tượng chức năng thông qua thuộc tính
str(somestring, 'UTF8')
787 của chúng. Xem thêm Mô -đun
str(somestring, 'UTF8')
788.

Truy cập

str(somestring, 'UTF8')
787 làm tăng một sự kiện kiểm toán
str(somestring, 'UTF8')
790 với các đối số
str(somestring, 'UTF8')
791 và
str(somestring, 'UTF8')
792.auditing event
str(somestring, 'UTF8')
790 with arguments
str(somestring, 'UTF8')
791 and
str(somestring, 'UTF8')
792.

Một đối tượng mã có thể được thực thi hoặc đánh giá bằng cách chuyển nó (thay vì chuỗi nguồn) cho các hàm tích hợp

str(somestring, 'UTF8')
793 hoặc
str(somestring, 'UTF8')
794.

Xem hệ thống phân cấp loại tiêu chuẩn để biết thêm thông tin.The standard type hierarchy for more information.

Mã đối tượng

Các đối tượng mã được sử dụng bởi việc triển khai để thể hiện mã Python thực thi của Pseudo được biên dịch bằng cách sử dụng như một cơ thể chức năng. Chúng khác với các đối tượng chức năng vì chúng không chứa một tham chiếu đến môi trường thực hiện toàn cầu của chúng. Các đối tượng mã được trả về bởi hàm

str(somestring, 'UTF8')
786 tích hợp và có thể được trích xuất từ ​​các đối tượng chức năng thông qua thuộc tính
str(somestring, 'UTF8')
787 của chúng. Xem thêm Mô -đun
str(somestring, 'UTF8')
788.

Truy cập

str(somestring, 'UTF8')
787 làm tăng một sự kiện kiểm toán
str(somestring, 'UTF8')
790 với các đối số
str(somestring, 'UTF8')
791 và
str(somestring, 'UTF8')
792.

Một đối tượng mã có thể được thực thi hoặc đánh giá bằng cách chuyển nó (thay vì chuỗi nguồn) cho các hàm tích hợp str(somestring, 'UTF8') 793 hoặc str(somestring, 'UTF8') 794.

Nhập đối tượng Jo

Loại đối tượng đại diện cho các loại đối tượng khác nhau. Một loại đối tượng được truy cập bởi chức năng tích hợp

str(somestring, 'UTF8')
795. Không có hoạt động đặc biệt trên các loại. Mô-đun tiêu chuẩn
str(somestring, 'UTF8')
796 xác định tên cho tất cả các loại tích hợp tiêu chuẩn.

Các loại được viết như thế này: str(somestring, 'UTF8') 797.

Đối tượng nullSlicings). It supports no special operations. There is exactly one ellipsis object, named

str(somestring, 'UTF8')
801 (a built-in name).
str(somestring, 'UTF8')
802 produces the
str(somestring, 'UTF8')
801 singleton.

Đối tượng này được trả về bởi các chức năng don don rõ ràng trả lại một giá trị. Nó hỗ trợ không có hoạt động đặc biệt. Có chính xác một đối tượng null, được đặt tên là

str(somestring, 'UTF8')
30 (một tên tích hợp).
str(somestring, 'UTF8')
799 sản xuất cùng một singleton.

Nó được viết là str(somestring, 'UTF8') 30.

Đối tượng EllipsisComparisons for more information. There is exactly one

str(somestring, 'UTF8')
806 object.
str(somestring, 'UTF8')
807 produces the singleton instance.

Đối tượng này thường được sử dụng bằng cách cắt (xem lát cắt). Nó hỗ trợ không có hoạt động đặc biệt. Có chính xác một đối tượng Ellipsis, được đặt tên là

str(somestring, 'UTF8')
801 (một tên tích hợp).
str(somestring, 'UTF8')
802 sản xuất singleton
str(somestring, 'UTF8')
801.

Nó được viết là str(somestring, 'UTF8') 801 hoặc str(somestring, 'UTF8') 805.

Đối tượng được thực hiệnTruth Value Testing above).

Đối tượng này được trả về từ các so sánh và hoạt động nhị phân khi chúng được yêu cầu hoạt động theo các loại mà họ không hỗ trợ. Xem so sánh để biết thêm thông tin. Có chính xác một đối tượng

str(somestring, 'UTF8')
806.
str(somestring, 'UTF8')
807 Sản xuất ví dụ Singleton.

Nó được viết là str(somestring, 'UTF8') 806.

Giá trị BooleanThe standard type hierarchy for this information. It describes stack frame objects, traceback objects, and slice objects.

Các giá trị Boolean là hai đối tượng không đổi str(somestring, 'UTF8') 37 và str(somestring, 'UTF8') 55. Chúng được sử dụng để thể hiện các giá trị sự thật (mặc dù các giá trị khác cũng có thể được coi là sai hoặc đúng). Trong bối cảnh số (ví dụ khi được sử dụng làm đối số cho toán tử số học), chúng hoạt động như số nguyên 0 và 1, tương ứng. Hàm tích hợp str(somestring, 'UTF8') 811 có thể được sử dụng để chuyển đổi bất kỳ giá trị nào thành boolean, nếu giá trị có thể được hiểu là giá trị sự thật (xem phần Kiểm tra giá trị sự thật ở trên).

Chúng được viết tương ứng là

str(somestring, 'UTF8')
37 và
str(somestring, 'UTF8')
55.

Đối tượng bên trong

Xem hệ thống phân cấp loại tiêu chuẩn cho thông tin này. Nó mô tả các đối tượng khung ngăn xếp, đối tượng Traceback và các đối tượng lát cắt.

Thuộc tính đặc biệt

Việc triển khai thêm một vài thuộc tính chỉ đọc đặc biệt vào một số loại đối tượng, trong đó chúng có liên quan. Một số trong số này không được báo cáo bởi chức năng tích hợp

str(somestring, 'UTF8')
814.

________ 1815 ________ 1816¶

Một từ điển hoặc đối tượng ánh xạ khác được sử dụng để lưu trữ các thuộc tính đối tượng (có thể ghi).

________ 1817 ________ 1818¶

Lớp mà một thể hiện lớp thuộc về.

________ 1819 ________ 1820¶

Tuple của các lớp cơ sở của một đối tượng lớp.qualified name of the class, function, method, descriptor, or generator instance.

________ 1821 ________ 1822 và

Tên của lớp, chức năng, phương thức, mô tả hoặc thể hiện trình tạo.

________ 1821 ________ 1824¶

________ 1819 ________ 1828 ()()

Phương pháp này có thể được ghi đè bởi Metaclass để tùy chỉnh thứ tự độ phân giải phương thức cho các trường hợp của nó. Nó được gọi là khởi tạo lớp và kết quả của nó được lưu trữ trong

str(somestring, 'UTF8')
829.

________ 1819 ________ 1831 ()()

Mỗi lớp giữ một danh sách các tài liệu tham khảo yếu đến các lớp con ngay lập tức của nó. Phương pháp này trả về một danh sách tất cả các tài liệu tham khảo vẫn còn sống. Danh sách theo thứ tự định nghĩa. Thí dụ:

str(somestring, 'UTF8')
26

Giới hạn độ dài chuyển đổi chuỗi số nguyên

CPYThon có giới hạn toàn cầu để chuyển đổi giữa

somestring.strip()
00 và
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
41 để giảm thiểu các cuộc tấn công dịch vụ từ chối. Giới hạn này chỉ áp dụng cho các cơ sở số thập phân hoặc không có năng lực khác. Phương pháp thập lục phân, bát phân và nhị phân là không giới hạn. Giới hạn có thể được cấu hình.

Loại

somestring.strip()
00 trong CPython là số chiều dài abitry được lưu trữ ở dạng nhị phân (thường được gọi là một chiếc Bignum). Không tồn tại thuật toán nào có thể chuyển đổi chuỗi thành số nguyên nhị phân hoặc số nguyên nhị phân thành một chuỗi trong thời gian tuyến tính, trừ khi cơ sở là sức mạnh của 2. Ngay cả các thuật toán nổi tiếng nhất cho cơ sở 10 cũng có độ phức tạp của phương pháp điều khiển phụ. Chuyển đổi một giá trị lớn như
str(somestring, 'UTF8')
835 có thể tiếp quản một giây trên CPU nhanh.

Giới hạn kích thước chuyển đổi cung cấp một cách thực tế để tránh CVE-2020-10735.

Giới hạn được áp dụng cho số lượng ký tự chữ số trong chuỗi đầu vào hoặc đầu ra khi thuật toán chuyển đổi phi tuyến tính sẽ được tham gia. Gạch dưới và dấu hiệu không được tính vào giới hạn.

Khi một hoạt động vượt quá giới hạn,

somestring.strip()
77 được nâng lên:

str(somestring, 'UTF8')
27

Giới hạn mặc định là 4300 chữ số như được cung cấp trong

str(somestring, 'UTF8')
837. Giới hạn thấp nhất có thể được cấu hình là 640 chữ số như được cung cấp trong
str(somestring, 'UTF8')
838.

Verification:

str(somestring, 'UTF8')
28

Mới trong phiên bản 3.10.7.

API bị ảnh hưởng

Giới hạn chỉ áp dụng cho các chuyển đổi có khả năng chậm giữa

somestring.strip()
00 và
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
41 hoặc
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42:

  • str(somestring, 'UTF8')
    
    842 với cơ sở mặc định 10.

  • str(somestring, 'UTF8')
    
    843 cho tất cả các cơ sở không phải là sức mạnh của 2.

  • str(somestring, 'UTF8')
    
    844.

  • str(somestring, 'UTF8')
    
    845

  • Bất kỳ chuyển đổi chuỗi nào khác sang cơ sở 10, ví dụ

    str(somestring, 'UTF8')
    
    846,
    str(somestring, 'UTF8')
    
    847 hoặc
    str(somestring, 'UTF8')
    
    848.

Các hạn chế không áp dụng cho các chức năng với thuật toán tuyến tính:

  • str(somestring, 'UTF8')
    
    843 với cơ sở 2, 4, 8, 16 hoặc 32.

  • str(somestring, 'UTF8')
    
    850 và
    str(somestring, 'UTF8')
    
    851.

  • str(somestring, 'UTF8')
    
    852,
    str(somestring, 'UTF8')
    
    853,
    str(somestring, 'UTF8')
    
    854.

  • Đặc điểm kỹ thuật định dạng ngôn ngữ nhỏ cho số lục giác, bát phân và nhị phân. for hex, octal, and binary numbers.

  • >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    41 đến
    somestring.strip()
    
    01.

  • >>> n = -37
    >>> bin(n)
    '-0b100101'
    >>> n.bit_length()
    6
    
    41 đến
    somestring.strip()
    
    08.

Định cấu hình giới hạn

Trước khi Python khởi động, bạn có thể sử dụng biến môi trường hoặc cờ dòng lệnh để định cấu hình giới hạn:

  • str(somestring, 'UTF8')
    
    859, ví dụ:
    str(somestring, 'UTF8')
    
    860 để đặt giới hạn thành 640 hoặc
    str(somestring, 'UTF8')
    
    861 để vô hiệu hóa giới hạn.

  • str(somestring, 'UTF8')
    
    862, ví dụ:
    str(somestring, 'UTF8')
    
    863

  • str(somestring, 'UTF8')
    
    864 chứa giá trị của
    str(somestring, 'UTF8')
    
    859 hoặc
    str(somestring, 'UTF8')
    
    862. Nếu cả ENV VAR và tùy chọn
    str(somestring, 'UTF8')
    
    867 được đặt, tùy chọn
    str(somestring, 'UTF8')
    
    867 được ưu tiên. Giá trị -1 chỉ ra rằng cả hai đều không được đặt, do đó giá trị
    str(somestring, 'UTF8')
    
    837 đã được sử dụng trong quá trình khởi tạo.
    str(somestring, 'UTF8')
    
    859 or
    str(somestring, 'UTF8')
    
    862. If both the env var and the
    str(somestring, 'UTF8')
    
    867 option are set, the
    str(somestring, 'UTF8')
    
    867 option takes precedence. A value of -1 indicates that both were unset, thus a value of
    str(somestring, 'UTF8')
    
    837 was used during initilization.

Từ mã, bạn có thể kiểm tra giới hạn hiện tại và đặt cái mới bằng API

str(somestring, 'UTF8')
870 này:

  • str(somestring, 'UTF8')
    
    871 và
    str(somestring, 'UTF8')
    
    872 là một getter và setter cho giới hạn toàn bộ phiên dịch. Trình tự phụ có giới hạn riêng của họ.

Thông tin về mặc định và tối thiểu có thể được tìm thấy trong

str(somestring, 'UTF8')
873:

  • str(somestring, 'UTF8')
    
    837 là giới hạn mặc định được biên dịch.

  • str(somestring, 'UTF8')
    
    838 là giá trị được chấp nhận thấp nhất cho giới hạn (trừ 0 vô hiệu hóa nó).

Mới trong phiên bản 3.10.7.

API bị ảnh hưởng

Giới hạn chỉ áp dụng cho các chuyển đổi có khả năng chậm giữa

somestring.strip()
00 và
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
41 hoặc
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
42:

str(somestring, 'UTF8')
842 với cơ sở mặc định 10.

str(somestring, 'UTF8') 843 cho tất cả các cơ sở không phải là sức mạnh của 2.

Bất kỳ chuyển đổi chuỗi nào khác sang cơ sở 10, ví dụ

str(somestring, 'UTF8')
846,
str(somestring, 'UTF8')
847 hoặc
str(somestring, 'UTF8')
848.

Example:

str(somestring, 'UTF8')
29

Nếu bạn cần vô hiệu hóa nó hoàn toàn, hãy đặt nó thành

str(somestring, 'UTF8')
41.

Chú thích

1

Thông tin bổ sung về các phương pháp đặc biệt này có thể được tìm thấy trong Hướng dẫn tham khảo Python (tùy chỉnh cơ bản).Basic customization).

2

Kết quả là, danh sách

str(somestring, 'UTF8')
882 được coi là bằng
str(somestring, 'UTF8')
883 và tương tự cho các bộ đếm.

3

Họ phải có vì trình phân tích cú pháp có thể nói với loại toán hạng.

4(1,2,3,4)(1,2,3,4)

Các ký tự vỏ là những nhân vật có thuộc tính danh mục chung là một trong những người LU (chữ cái, chữ hoa), LL LL (chữ cái, chữ thường), hoặc LT LT (chữ cái, Titlecase).

5(1,2)(1,2)

Do đó, để định dạng một tuple, bạn nên cung cấp một bộ phận đơn lẻ mà phần tử duy nhất là tuple được định dạng.

Làm thế nào để bạn tước byte trong Python?

Để tước khoảng trắng từ đối tượng byte:..
Sử dụng các byte. Phương thức Decode () để chuyển đổi đối tượng byte thành chuỗi ..
Sử dụng str. Phương thức Dải () để loại bỏ tất cả khoảng trắng dẫn đầu và dấu vết từ chuỗi ..
Sử dụng str. Phương thức mã hóa () để chuyển đổi chuỗi thành đối tượng byte ..

Làm thế nào để bạn loại bỏ các byte null khỏi một chuỗi trong python?

Phương thức str.replace () sẽ loại bỏ các lần xuất hiện của ký tự \ x00 bằng cách thay thế chúng bằng một chuỗi trống.Đã sao chép!Ký tự \ x00 là một ký tự null đại diện cho một byte hex với tất cả các bit ở 0.str. replace() method will remove occurrences of the \x00 character by replacing them with an empty string. Copied! The \x00 character is a Null-character that represents a HEX byte with all bits at 0.

Byte () làm gì trong Python?

Hàm python byte () hàm byte () trả về đối tượng byte.Nó có thể chuyển đổi các đối tượng thành các đối tượng byte hoặc tạo đối tượng byte trống của kích thước được chỉ định.returns a bytes object. It can convert objects into bytes objects, or create empty bytes object of the specified size.

Chuỗi byte Python là gì?

Trong Python, một chuỗi byte chỉ là: một chuỗi các byte.Nó không thể đọc được con người.Dưới mui xe, mọi thứ phải được chuyển đổi thành chuỗi byte trước khi nó có thể được lưu trữ trong máy tính.Mặt khác, một chuỗi ký tự, thường chỉ được gọi là "chuỗi", là một chuỗi các ký tự.Nó là người có thể đọc được.a sequence of bytes. It isn't human-readable. Under the hood, everything must be converted to a byte string before it can be stored in a computer. On the other hand, a character string, often just called a "string", is a sequence of characters. It is human-readable.