Phương pháp oxy hóa -- khử Phép độ iod định lượng nguyên liệu natri thiosulfat

Bạn đang xem chủ đề Chuẩn Độ Oxi Hóa Khử Phương Pháp Iod được cập nhật mới nhất ngày 18/07/2022 trên website Channuoithuy.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung Chuẩn Độ Oxi Hóa Khử Phương Pháp Iod hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Cho đến thời điểm hiện tại, chủ đề này đã đạt được 792 lượt xem.

--- Bài mới hơn ---

  • Một Số Phương Pháp Cân Bằng Phản Ứng Oxi Hóa
  • Phản Ứng Oxi Hoá Khử, Cách Lập Phương Trình Hoá Học Và Bài Tập
  • Phương Pháp Quản Trị Thời Gian Quả Cà Chua Pomodoro
  • Tự Học Tiếng Đức Với Phương Pháp “quả Cà Chua” Pomodoro
  • Sử Dụng Pomodoro Sao Cho Hiệu Quả?
  • 1. Phương pháp bromat – bromua

    Phương pháp này dựa trên phản ứng oxy hóa – khử, dùng chất oxy hóa là ion BrO 3–

    Phản ứng có sự tham gia của H+ nên phải tiến hành chuẩn độ trong môi trường axit. Mặc dù BrO 3– là chất oxy hóa mạnh nhưng tốc độ phản ứng oxy hóa bằng BrO 3– xảy ra chậm. Để tăng tốc độ của phản ứng cần tiến hành phản ứng trong dung dịch nóng và môi trường axit mạnh.

    Sau điểm tương đương khi dư 1 giọt BrO 3– thì xảy ra phản ứng:

    Br 2 tự do sinh ra không đủ để nhận ra màu. Do vậy để nhận ra điểm cuối của quá trình chuẩn độ người ta thường dùng các chất màu hữu cơ như metyl da cam, metyl đỏ… để làm chỉ thị. Sau điểm tương đương BrO 3– dư sẽ phản ứng với Br– có sẵn trong dung dịch sinh ra Br 2 nó sẽ oxy hóa chất màu hữu cơ nên sẽ mất màu.

    Các chất màu hữu cơ dùng làm chỉ thị cho phép đo này không phải là chỉ thị oxy hóa – khử, quá trình Br 2 oxy hóa chúng là quá trình bất thuận nghịch. Do đó khi chuẩn độ cần lưu ý không được để thuốc thử dư từng vùng trong quá trình chuẩn độ, muốn vậy phải chuẩn độ từ từ và phải lắc đều. Do tính chất bất thuận nghịch của phản ứng oxy hóa chất chỉ thị bởi Br 2, khi chuẩn độ màu có thể mất trước điểm tương đương vì thế trước khi kết thúc chuẩn độ cần thêm vài giọt chất chỉ thị nữa.

    Phương pháp bromat – bromua được dùng để chuẩn độ trực tiếp một số chất khử ví dụ như As (III), Sb (III), …

    Ngoài ra phương pháp này còn cho phép xác định được một số chất hữu cơ có khả năng bị brom hóa, khi đó ta tiến hành chuẩn độ chất hữu cơ bằng dung dịch chuẩn KBrO 3 khi có mặt một lượng dư KBr trong môi trường axit.

    Ngoài các phương pháp trên, người ta dùng một số phương pháp khác như phương pháp xeri dựa trên phản ứng oxy hosacuarion Ce 4+.

    Và phương pháp vanadat dựa trên phản ứng oxy hóa VO 2+:

    Các phép đo này ít dùng trong thực tế vì các thuốc thử Ce 4+ và VO 2+ tương đối đắt.

    2. Phương pháp nitrit

    Trong môi trường axit, nitrit phản ứng với các chế phẩm của nhóm amin thơm (sunfamit, Novocain,…) tạo thành hợp chất diazoni:

    Để nhận ra điểm tương đương của phản ứng này, có thể dùng chỉ thị theo 2 cách:

    – Chỉ thị ngoài: Khi thừa nitrit, nitrit sẽ làm xanh giấy tẩm hồ tinh bột có iotua, do nitrit oxy hóa iotua, giải phóng I 2 theo phương trình:

    – Chỉ thị nội: Cho thêm một chất chỉ thị ví dụ như tropeolin OO vào bình định lượng, khi thừa nitrit, nitrit sẽ phản ứng với chỉ thị tạo thành dẫn chất nitroso có màu vàng nhạt.

    Phương pháp định lượng nitrit thường tiến hành ở điều kiện nhiệt độ thấp (khoảng 10 o) do đó hay ngâm bình định lượng trong nước đá.

    --- Bài cũ hơn ---

  • Các Phương Pháp Cân Bằng Phản Ứng Oxi Hóa Khử
  • Các Câu Hỏi Thường Gặp Và Khái Niệm Về Chuẩn Độ
  • Bài Tập Cân Bằng Phương Trình Phản Ứng Oxi Hóa Khử
  • Xem Phương Pháp Giải Nhanh Bài Tập Phương Trình Oxi Hóa
  • Phương Pháp, Cách Cân Bằng Phản Ứng Oxi Hóa Khử Hay, Chi Tiết
  • --- Bài mới hơn ---

  • Phương Pháp, Cách Cân Bằng Phản Ứng Oxi Hóa Khử Hay, Chi Tiết
  • Xem Phương Pháp Giải Nhanh Bài Tập Phương Trình Oxi Hóa
  • Bài Tập Cân Bằng Phương Trình Phản Ứng Oxi Hóa Khử
  • Các Câu Hỏi Thường Gặp Và Khái Niệm Về Chuẩn Độ
  • Các Phương Pháp Cân Bằng Phản Ứng Oxi Hóa Khử
  • {idkey=7772b0}

    Phản ứng chuẩn độ oxy hóa khử là một trong những phản ứng quan trọng trong môn hóa phân tích. Bài viết giới thiệu các chất oxy hóa mạnh và một số chất chuẩn cơ bản cho phản ứng chuẩn độ oxy hóa khử.

    Chất Oxy hóa mạnh-Kali Permanganat và Cerium(IV)

    Ion permanganat và ion Cerium(IV) là những tác nhân oxy hóa rất mạnh, các bán phản ứng cho hai loại ion này được viết như sau:

    Điện thế của chúng đã cho chúng ta thấy rằng sự khử của Cerium(IV) cho các dung dịch trong 1 M sulfuric axít. Nếu ion permanganat được hòa tan trong dung dịch 1 M axít percloric và Axít nitric 1 M, thì điện thế sẽ lần lượt là 1.70 và 1.60 V. Các dung dịch của Ce (IV) trong percloric axít và axít nitric đều không bền do đó việc ứng dụng của các dung dịch này rất hạn chế.

    Bán phản ứng ở trên của ion permanganat chỉ xảy ra trong dung dịch axít có nồng độ từ 0.1 M trở lên. Trong các dung dịch axít yếu sản phẩm phản ứng có thể là Mn (III), Mn (IV), hoặc Mn (VI) tùy thuộc vào các điều kiện phản ứng.

    Cho tất cả các mục đích thực nghiệm, tính oxy hóa mạnh của các dung dịch permanganat và Cerium(IV) có thể so sánh với nhau. Dung dịch Permanganat phân ly chậm trong trong môi trường axít sunfuric, trái lại dung dịch của Cerium(IV) không phân ly trong axít sunfuric. Do đó dung dịch permanganat trong một số trường hợp, chúng được dùng làm dung dịch chuẩn. Cerium(IV) trong axít sunfuric không oxy hóa được ion Clo và có thể dùng để chuẩn độ chất HCl của các chất phân tích. Ion permanganat không thể dùng với dung dịch axít HCl trừ khi có các tác nhân làm chậm sư oxy hóa của ion Clo, nếu không làm chậm sự oxy hóa của ion Clo thì sẽ dẫn đến hiện tượng tác nhân chuẩn sẽ bị phản ứng hết.

    Mặc dù dung dịch Cerium(IV) có nhiều ưu điểm hơn dung dịch Permanganat, nhưng Permanganat lại được dùng phổ biến hơn. Một lý do mà tại sao dung dịch Permanganat lại được dùng nhiểu hơn là vì màu của dung dịch Permanganat đủ bền để sử dụng như một chất chỉ thị trong các quá trình chuẩn độ. Màu của dung dịch Cerium(IV) là vàng cam, nhưng màu của của nó không bền để đóng vai trò như một chất chỉ thị trong quá trình chuẩn độ. Một lý do khác nữa mà đo đó dung dịch Permanganat lại được sử dụng phổ biến hơn Cerium(IV) là vấn đề giá cả. Giá của một lít dung dịch Permanganat 0.02M vào khoảng trên dưới mười nghìn đổng so với giá của dung dịch Cerium(IV) cùng nồng độ là hơn năm mươi nghìn đồng. Một thuận lợi khác là dung dịch Cerium(IV) thường có xu hướng hình thành kết tủa của các muối trong dung dịch có nồng độ nhỏ hơn 0.1 M trong các môi trường axít mạnh.

    Như đã đề cập ở trên, một lợi điểm của Kali permanganat là màu tím đậm của nó mà có thể đóng vai trò chất chỉ thị trong các quá trình chuẩn độ. Chỉ 0.01 ml dung dịch Kali Permanganat trong 100 ml nước là chúng ta có thể quan sát được màu của nó. Nếu dung dịch permanganat quá loãng, thì diphenylamin sunphonic axít hoặc phức Phenatrolin Fe(II)rên, một tính chất hữu ích của Kali permanganat là màu tím đổng so với giá của dung dịch Cerium() có thể được thêm vào để làm sắc nét điểm cuối.

    Điểm cuối của permanganat không bền bởi vỉ lượng dư ion permanganat sẽ phản ứng chậm với Mangan(II) có nồng độ tương đối cao xuất hiện ở điểm cuối của quá trình chuẩn độ.

    Hằng số cân bằng cho phản ứng này là 10 47. Điều này xác định rằng nồng độ cân bằng của ion Permanganat là rất nhỏ ngay cả trong moi trường có tính axít cao. Tốc độ phản ứng tương đối chậm và điểm cuối nhạt dần trong khoảng thời gian 30 giây.

    Dung dịch Cerium(IV) như đã đề cập ở trên, màu vàng cam, nhưng màu không đủ mạnh để làm vai trò như một chỉ thị. Chỉ thị phổ biến nhất dùng cho Cerium(IV) là phức Fe(II) của 1,10 phentrolin hoặc các dẫn xuất thế của nó.

    Các dung dịch aquơ của permanganat thì không hoàn toàn bền bởi vì ion permanganat có xu hướng oxy hóa nước hình thành Mangan dioxit.

    Mặc dù hằng số cân bằng cho phản ứng này cho biết rằng sự hình thành Mangan dioxit là hiển nhiên khi chuẩn độ một cách đúng phương pháp, dung dịch sẽ bền bởi vì phản ứng phân ly xảy ra rất chậm. Phản ứng phân ly được xúc tác bằng ánh sáng, nhiệt độ, axít, bazơ, Mangan(II) và Mangan dioxit. Mangan dioxit thậm chí có thể tìm thấy trong dung dịch Kali Permanganat tinh khiết nhất. Loại bỏ Mangan dioxit bằng phương pháp lọc, trước khi tiến hành chuẩn độ sẽ cải thiện được tính ổn định của dung dịch. Giấy lọc không thể dùng để lọc Mangan dioxit vì ion permanganat sẽ phản ứng với giấy lọc tạo ra thêm Mangan dioxit. Các dung dịch chứa lượng dư chất chuẩn Permanganat không bao giờ được đun nóng bởi vì, như đã nói ở trên, chúng sẽ phân hủy bằng việc oxy hóa nước.

    Các chất chuẩn cơ bản

    Natri Oxalat (Na 2C 2O 7) được dùng tương đối phổ biến để chuẩn độ các dung dịch permanganat và Cerium(IV). Trong dung dịch axít, ion oxalat bị chuyển sang axít không phân ly.

    Cùng một sản phẩm oxy hóa sẽ được tạo ra khi oxalat phản ứng với permanganat và Cerium(IV).

    Phản ứng giữa ion permanganat và axít oxalic rất phức tạp và quá trình phản ứng xảy ra chậm, trừ khi có sự hiện diện của Mangan (II). Khi mà nồng độ của Mangan(II) tăng lên, quá trình phản ứng sẽ nhanh dần lên do kết quả của hiện tượng tự xúc tác.

    Điều này đã được quan sát khi các dung dịch của natri oxalat được chuẩn độ ở 60 0C và 90 0C, lượng ion permanganat mất đi khoảng 0.1-0.4% nhỏ hơn so với lý thuyết. Sự chênh lệnh này có thể do sự oxy hóa không khí của axít oxalic. Trong suốt quá trình chuẩn độ như thế này, sau khi permanganat phản ứng hết, dung dịch được đun nóng lên 60 0 và tiến hành chuẩn độ cho đến khi có màu hồng ở điểm cuối xuất hiện và có thể quan sát được trong khoảng thời gian 30 giây. Hầu hết các mục đích, chuẩn độ trực tiếp, axít oxalic nóng sẽ thu được kết quả cao hơn (khoảng 0.2-0.3%). Nếu như sự chính xác cao hơn được đặt ra thì chuẩn độ trực tiếp bằng dung dịch nóng của một phần chất chuẩn cơ bản có thể được theo sau bằng sự chuẩn độ của hai hay ba phần nữa không được đun nóng cho đến khi chuẩn độ hết mẫu cần chuẩn độ.

    Kali Dicromat

    Ion cromat bị khử đến ion Crom(III) có màu xanh lục.

    Chuần độ Dicromat thường được thực hiện trong các dung dịch có nồng độ khoảng 1M với sự có mặt của axít hydrocloric hay axít sunfuric. Trong các dung dịch này, điện thế hình thức cho bán phản ứng là từ 1.0 đến 1.1 V.

    Các dung dịch Kali dicromat tương đối bền và có thể đun nóng mà không bị phân ly. Các tác nhân chuẩn cơ bản có bán trên thị trường của các mặt hàng hóa chất tại Việt Nam, một số thuốc thử chuyên biệt khác được nhập vể từ nước ngoài mà chủ yếu là sản phẩm được sản xuất tại Trung Quốc và Đức, rất ít các sản phẩm được nhập vào Việt Nam từ U.K và USA. So với Permanganat và Cerium(IV) thì Kali Dicromat có một số nhược điểm là nó nằm ở thế điện cực thấp hơn và phản ứng xảy ra chậm khi tương tác với một số thuốc thử.

    Đối với hầu hết các mục đích phân tích thì thuốc thử ưu việt thường là Kali Dicromat đạt yêu cầu và cho phép việc chuần bị trực tiếp các dung dịch mẫu. Chất rắn được làm khô ở 150-200 0 C trước khi đem đi cân. Màu vàng của dung dịch dicromat không đủ nhạy cảm để phát hiện điểm cuối. Diphenylamin sulfonic axít là một chỉ thị tuyệt vời cho các quá trình chuẩn độ với dicromat. Dạng oxy hóa của chỉ thị có màu tía, và dạng khử thì về cơ bản là không màu. Do đó trong phép chuẩn độ trực tiếp màu quan sát được sẽ chuyển từ màu xanh lục của ion Crom(III) sang màu tía.

    Yếu tố cơ bản của việc sử dụng dicromat cho việc chuẩn độ thể tích của Fe(II).

    Phản ứng của dicromat với ion Fe(II) đã được sử dụng rộng rãi cho việc xác định gián tiếp một số tác nhân oxy hóa đa dạng. Trong những ứng dụng này một lượng dư đo được của dung dịch Fe(II) được thêm vào một dung dịch mang tính axít của chất phân tích. Lượng dư Fe(II) sau đó được chuẩn độ ngược với chất chuần kali dicromat. Chuẩn dung dịch Fe(II) bằng việc chuẩn độ với dicromat được thực hiện đồng thời với quá trình phân tích bởi vì các dung dịch của Fe(II)hời chuẩn độ với dicromat được thực hiện dicromat.phân tích. n oxy hóa đa dạng.romat.tác với một số thuốc thử có xu hướng bị oxy hóa bởi không khí. Phương pháp này đã được ứng dụng cho việc xác định các ion nitrat, clorat, permanganat, và dicromat, cũng như đối với các peroxit hữu cơ và nhiều tác nhân oxy hóa khác.

    Iot

    Một số dung dịch của Iot là các tác nhân oxy hóa yếu mà chúng được dùng để xác định các tác nhân khử mạnh.

    Các dung dịch chuẩn Iot có ứng dụng tương đối hạn chế so với các chất oxy hóa khác, chúng ta phải nên xét các đặc tính của nó vì thế điện cực của cặp I 3-/I– thấp hơn. Thế điện cực thấp là một điều rất thuận lợi bởi vì nó phổ biến một mức độ chọn lựa cho phép có thể xác định các tác nhân khử mạnh với sự có mặt của một số tác nhân khử yếu. Một thuận lợi quan trọng nữa của Iot đó là dễ chuẩn bị dung dịch chuẩn, tính nhạy cảm và chỉ thị hoàn nguyên cho các quá trình chuẩn độ. Dung dịch Iot mặc dù là thiếu tính ổn định và phài chuẩn lại thường xuyên.

    Iot không phải là chất dễ hòa tan trong nước (~0.001M). Để có các dung dịch có nồng độ thích hợp dùng được cho phân tích, iot sẽ được hòa tan trong một lượng KI có nồng độ vừa phải. Iot dễ hòa tan hơn trong môi trường như thế này.

    Iot hòa tan chậm trong các dung dịch kali iođua, đặc biệt nếu nồng độ của iođua thấp. Để có dung dịch đồng ly, iot luôn được hòa tan trong một lượng nhỏ dung dịch kali iođua có nồng độ cao. Hòa tan iot trong dung dịch kali iođua phải tiến hành chậm và tỉ mỉ, không được pha loãng hỗn hợp cho đến khi tinh thể iot cuối cùng tan hết, nếu không thì phân tử lượng của của dung dịch loãng sẽ dần tăng lên theo thời gian. Để loại bỏ yếu tố bất lợi này bằng cách lọc dung dịch trước khi tiến hành chuẩn. Sự oxy hóa không khí của iot có thể gây ra sự thay đổi phân tử lượng của dung dịch iot.

    Sự oxy hóa không khí tăng lên khi có mặt của axít, ánh sáng và nhiệt độ.

    Dung dịch có thể được chuẩn độ ngược bằng natri thiosunfat hoặc bari thosunfat monohydrat.

    Kali Bromat

    Chất chuẩn cơ sở kali bromat có thể được dùng để chuẩn bị trực tiếp các dung dịch chuẩn có tính ổn định cao. Chuẩn độ trực tiếp với kali bromat là tương đối hiếm. Thay vào đó kali bromat được dùng khá phổ biến như là một nguồn của brôm. Trong phươn pháp này, lượng kali bromua không xác định được thêm vào dung dịch mang tính axít của chất phân tích. Việc thêm một thể tích xác định của chất chuẩn kali bromat dẫn đến việc sinh ra một hàm lượng brôm hợp thức.

    Việc phát sinh Brôm một cách gián tiếp đã khắc phục được tính không ổn định của dung dịch chuẩn Brôm.

    Chất chuẩn kali bromat được dùng chủ yếu để xác định các hợp chất hữu cơ phản ứng được với brôm. Rất ít các phản ứng loại này xảy ra đủ nhanh để cho phép chuẩn độ trực tiếp. Thay vào đó một lượng dư xác định của chất chuẩn bromat được thêm vào dung dịch chứa mẫu cộng với một lượng dư KI. Sau khi axít hóa, hỗn hợp được cho phản ứng cho đến khi có sự xuất hiện của brôm như là một dấu hiệu để kết thúc quá trình chuẩn độ. Để xác định lượng brôm dư, lượng dư Ki không xác định được đưa vào để chuyển lượng brôm dư sang iot:

    Lượng iot giải phóng được chuẩn với chất chuẩn natri thiosunfat. Đối với việc xác định các hợp chất hữu cơ, brôm được đưa vào một phân tử hữu cơ bằng các phản thế hoặc phản ứng cộng.

    --- Bài cũ hơn ---

  • Chương 3. Phương Pháp Chuẩn Độ Oxy Hóa Khử
  • 12 Cách Cân Bằng Phương Trình Hóa Học Chuẩn Nhất
  • Định Lượng Đường Khử, Đường Tổng Bằng Phương Pháp Chuẩn Độ Oxy Hóa Khử Với Ferrycyanure
  • Cách Giải Bài Tập Về Oxi Hóa Khử Hay, Chi Tiết
  • Cách Cân Bằng Phản Ứng Oxi Hóa Khử Nhanh Nhất
  • --- Bài mới hơn ---

  • 12 Cách Cân Bằng Phương Trình Hóa Học Chuẩn Nhất
  • Chương 3. Phương Pháp Chuẩn Độ Oxy Hóa Khử
  • Chuẩn Độ, Chuẩn Độ Oxi Hóa Khử, Giảng Dạy Hóa Học, Hóa Học Nhà Trường, Chất Oxi Hóa, Permanganat
  • Phương Pháp, Cách Cân Bằng Phản Ứng Oxi Hóa Khử Hay, Chi Tiết
  • Xem Phương Pháp Giải Nhanh Bài Tập Phương Trình Oxi Hóa
  • TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 1 BÀI 1: ĐỊNH LƯỢNG ĐƯỜNG KHỬ, ĐƯỜNG TỔNG BẰNG PHƯƠNG PHÁP CHUẨN ĐỘ OXY HÓA KHỬ VỚI FERRYCYANURE I. Nguyên tắc: Khi cho ferrycyanure K3Fe(CN)6 phản ứng với đường khử, sản phẩm thu được là ferrocyanure. Dựa vào phản ứng này, ta có thể suy ra lượng đường khử có mặt trong dung dịch cần xác định. Việc chuẩn độ được tiến hành trong môi trường kiềm NaOH, khi đun nóng với chỉ thị xanh metylen (methylen blue). Phương trình phản ứng: CH2OH-(CHOH)4-CHO + K3Fe(CN)6 + 2NaOH CH2OH-(CHOH)4-COONa + NaK3Fe(CN)6 + H2O Phương pháp này đơn giản hơn phương pháp dùng dung dịch kiềm của sulfat đồng do không tạo tủa và phản ứng kết thúc rõ ràng. Kết quả tính toán không dựa vào phương trình lý thuyết, mà dùng công thức thực nghiệm. Độ chính xác của kết quả phụ thuộc nhiều yếu tố, nhưng trình tự tiến hành và thao tác là quan trọng nhất. Tất cả monosacarit và một số oligosacarit là đường khử. Các oligosacarit và polysacarit dễ bị thủy phân thành monosacarit vì vậy có TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 2 thể định lượng được đường khử trước và sau thủy phân để tính hàm lượng của chúng. II. Hoá chất-dụng cụ: 1. Dụng cụ: Bếp điện, kẹp, lưới amiang, nồi cách thủy Phễu, ống đong, bình định mức, becher, erlen, burette, pipette 2. Hóa chất: K3Fe(CN)6 1% Đường glucoza 0,5% (w/v) NaOH 5%; 2,5N HCl 5% CCl3COOH 10% Methyl red 1% Methylen blue 0,04% III. Tiến hành: 1. Xử lý nguyên liệu: Nguyên liệu không chứa nhiều tinh bột hoặc inulin Dùng nước nóng trích ly đường. Cân 1-2g mẫu nếu là nguyên liệu khô (cây, lá hoặc quả khô) hoặc 5 – 10g nếu là nguyên liệu tươi có hàm ẩm cao (rau, quả tươi). Cho vào cối sứ nghiền thật nhỏ với bột thủy tinh hay cát sạch và 30mL nước cất nóng 70 – 80oC. Trích ly nhiều lần bằng nước nóng. Chuyển lượng dịch vào bình định mức, bỏ phần bã đã trích hết đường. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 3 Nguyên liệu giàu protein (mô động vật, đậu) Kết tủa protein và các tạp chất bằng dung dịch acid tricloacetic 10%, sau đó trung hòa bằng dung dịch NaOH 5% với chỉ thị methyl red (màu đỏ chuyển sang vàng). Thêm nước cất tới vạch định mức, lọc qua giấy lọc vào cốc hay bình khô. Nước qua lọc là dung dịch định lượng đường khử. Nguyên liệu chứa nhiều tinh bột hay inulin (khoai lang, sắn, khoai tây) Trích ly đường bằng rượu 70 – 80o. Đun cách thủy hỗn hợp trong bình có lắp ống sinh hàn không khí. Trong trường hợp này không cần kết tủa protein vì lượng protein chuyển vào dung dịch không đáng kể. Nguyên liệu chứa nhiều acid hữu cơ (cà chua, dứa, chanh, khế,) Trong quá trình trích ly đường, sacaroza có thể bị thủy phân một phần do sự có mặt của acid hữu cơ có sẵn trong nguyên liệu, do đó khi cần xác định riêng đường khử và đường sacaroza, phải trung hòa acid hữu cơ bằng dung dịch NaOH 5% hay Na2CO3 bão hòa. Cân chính xác khoảng 10g nguyên liệu, nghiền nhuyễn nguyên liệu trong cối sứ với một ít nước cất. Nhỏ 3 giọt chỉ thị metyl đỏ (methyl red) và cho từ từ từng giọt NaOH 5% vào đến khi xuất hiện màu hồng nhạt. Sau đó cho hỗn hợp vào bình định mức 100ml để trích ly, lắc đều trong 10 phút, định mức tới vạch và đem lọc. 2. Định lượng đường khử: – Sau khi lọc, lấy dung dịch mẫu chứa đường khử , cho vào burette. – Cho vào bình nón 10ml dung dịch K3Fe(CN)6 1% và 2,5mL dung dịch NaOH 2,5N. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 4 – Đun sôi và chuẩn độ ngay trên bếp bằng dung dịch đường khử từ burette, cho từng giọt một, lắc mạnh. – Dung dịch ban đầu có màu vàng chanh của ferrycyanure. Điểm dừng chuẩn độ xác định khi màu vàng chanh biến mất, dung dịch trong suốt không màu trong khoảng 30 giây rồi chuyển sang màu vàng rơm rất nhạt của ferrocyanure. Trong trường hợp khó nhận điểm chuyển màu, có thể kiểm tra điểm kết thúc bằng cách nhỏ một giọt chỉ thị methylen blue và một giọt đường thừa đầu tiên sẽ làm mất màu xanh cho biết phản ứng đã kết thúc. – Kết quả lần chuẩn độ đầu tiên chỉ có giá trị tham khảo cho lần chuẩn độ thứ hai. Lần này, sau khi đun sôi dung dịch ferrycyanure, xả nhanh lượng đường (theo kết quả lần chuẩn độ trước), chỉ để lại khoảng dưới 1mL để chuẩn độ tiếp tìm chính xác điểm cuối. – Kết quả tính toán chỉ sử dụng từ lần chuẩn độ thứ hai trở đi. – Lặp lại thí nghiệm chuẩn độ 3 lần. – Tính kết quả: Trong thí nghiệm, Vk mL dung dịch mẫu và Vg mL dung dịch glucose 0,5% cùng phản ứng với một dung dịch ferrycyanure ở một nồng độ xác định. Như vậy, Vk mL dung dịch mẫu tương ứng với Vg mL dung dịch glucose 0,5% có (0,5 x Vg) / 100 g glucose. Lượng đường khử được tính bằng công thức: mVk VVgXk ×× ××× = 100 1005,0 Trong đó: TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 5 Xk – lượng đường khử, g/100g hay g/100mL Vg – thể tích dung dịch glucose 0,5% cho chuẩn độ, mL Vk – thể tích dung dịch đường khử cho chuẩn độ, mL V – thể tích bình định mức, mL m – lượng mẫu thí nghiệm, g hoặc mL 3. Định lượng đường tổng: Đường tổng bao gồm các gluxit hòa tan trích ly được trong nước. Cân chính xác khoảng 10g nguyên liệu, nghiền nhuyễn nguyên liệu trong cối sứ với một ít nước cất. Nhỏ 3 giọt chỉ thị metyl đỏ (methyl red) và cho từ từ từng giọt NaOH 5% vào đến khi xuất hiện màu hồng nhạt. Sau đó cho hỗn hợp vào bình định mức 100ml để trích ly, lắc đều trong 10 phút, định mức tới vạch và đem lọc. Lấy chính xác 50 mL dung dịch mẫu cho vào bình tam giác 250mL . Thêm 20mL dung dịch HCl 5%, và đem đun cách thủy hỗn hợp trong 30 – 45 phút. Sau đó, làm nguội nhanh và trung hòa hỗn hợp bằng dung dịch NaOH 2,5N hoặc dung dịch Na2CO3 bão hòa với chỉ thị methyl red (dung dịch từ màu đỏ chuyển sang vàng). Sau đó, cho vào bình định mức 250mL và định mức tới vạch. Tiến hành chuẩn độ tương tự như định lượng đường khử. Hàm lượng đường tổng được tính bằng công thức: mVt VVVgXt ××× ×××× = 50100 1005,0 21 Trong đó: Xt – hàm lượng đường tổng, % Vg – thể tích dung dịch glucoza 0,5% cho chuẩn độ, mL TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 6 Vt – thể tích dung dịch đường tổng cho chuẩn độ, mL V1 – thể tích bình định mức của dung dịch xác định đường khử, mL V2 – thể tích bình định mức của dung dịch xác định đường tổng, mL m – lượng mẫu cân thí nghiệm, g hoặc mL 4. Định lượng glucose chuẩn 0,5%: tiến hành thí nghiệm tương tự đối với dung dịch đường chuẩn là dung dịch glucose 0,5%. Thay lượng đường khử trên burette bằng dung dịch glucose chuẩn 0,5% và chuẩn độ tương tự như định lượng đường khử. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 7 BÀI 2: ĐỊNH LƯỢNG NITƠ TỔNG BẰNG PHƯƠNG PHÁP MICRO-KJELDAHL Phương pháp Micro – Kjeldahl thường được dùng để xác định tổng lượng Nitơ trong các phẩm vật có nguồn gốc vi sinh vật. I. Nguyên tắc: Khi đốt nóng phẩm vật đem phân tích với H2SO4 đậm đặc, các hợp chất hữu cơ bị oxy hóa. Carbon và Hydro tạo thành CO2 và H2O. Còn Nitơ sau khi được giải phóng ra dưới dạng NH3 kết hợp với H2SO4 tạo thành (NH4)2SO4 tan trong dung dịch. Đuổi NH3 khỏi dung dịch bằng NaOH đồng thời cất và thu NH3 bằng một lượng dư H2SO4 0,1N. định phân lượng H2SO4 0,1N còn lại bằng dung dịch NaOH 0,1N chuẩn, qua đó tính được lượng Nitơ có trong mẫu nguyên liệu thí nghiệm. II. Dụng cụ thiết bị: Máy cất đạm bán tự động GERHARDT, Tủ Hotte Bình Kjeldahl 50mL Ống đong 25mL Pipette 2mL; 10mL Erlen 500mL Bình định mức 100mL Burette 25mL TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 8 Becher 100mL; 250mL III. Hóa chất: H2SO4 đặc, NaOH 40%, HClO4 tinh khiết Dung dịch NaOH 0,1N dung dịch chuẩn H2SO4 0,1N Phenolphtalein 1% IV. Cách tiến hành: 1. Vô cơ hóa mẫu: Tiến hành trong tủ Hotte. Lấy mẫu cho vào bình Kjeldahl. Tùy loại nguyên liệu nhiều hay ít chất đạm, mẫu rắn cân 0,2 đến 0,5g mẫu lỏng lấy từ 2 đến 5mL (nước mắm lấy 2 mL, sữa lấy 5mL). Thêm vào từ từ 10 mL H2SO4 đậm đặc (tỉ trọng 1,84). Để tăng nhanh quá trình vô cơ hóa (đốt cháy) cần phải cho thêm chất xúc tác. Tốt nhất là dùng 0,5 g hỗn hợp K2SO4 : CuSO4 : Se (100:10:1). Có thể dùng Se kim loại (0,05g) hoặc dùng hỗn hợp CuSO4 : K2SO4 (1:3). Hỗn hợp xúc tác có tác dụng tăng nhiệt độ sôi, làm tăng vận tốc quá trình phản ứng. Có thể dùng xúc tác là axit Perchloric HClO4, giải phóng O2 cho phản ứng Oxyhóa. Sau khi thêm các chất xúc tác, đun nhẹ hỗn hợp tránh sôi trào, và chỉ đun mạnh khi hỗn hợp đã hoàn toàn chuyển sang dịch lỏng. Trong quá trình đun thỉnh thoảng lắc nhẹ, tráng khéo léo sao cho không còn một vết đen nào của mẫu nguyên liệu thí nghiệm chưa bị phân hủy sót lại trên thành bình. Đun cho tới khi dung dịch trong bình hoàn toàn trắng. 2. Cất đạm: Tiến hành trong máy cất đạm bán tự động GERHARDT của Đức. Chuẩn bị máy cất đạm: cắm điện, bật máy, màn hình sẽ hiện lên “H”, chờ cho đến khi màn hình hiện lên “P”, máy đã sẵn sàng làm việc. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 9 Chuyển toàn bộ dung dịch mẫu sau khi đã vô cơ hóa xong ở bình Kjeldahl vào bình định mức 100mL (chú ý: lúc này trong bình Kjeldahl còn dư 1 lượng H2SO4 đậm đặc trong dung dịch mẫu của quá trình vô cơ hóa nên phải cho trước 1 ít nước cất vào bình định mức trước khi đổ dung dịch mẫu vào), thêm nước cất cho đến vạch định mức. Lúc này nhiệt tỏa ra rất mạnh làm nước bay hơi một phần. Làm nguội bình định mức và điều chỉnh lại mức nước để tránh sai số, sau đó đổ ra erlen để dễ lắc trộn dung dịch mẫu đồng đều. – Lấy 10mL dung dịch H2SO4 0.1N cho vào erlen 250ml, lắp vào máy. Chú ý nhúng ngập ống vào dịch lỏng. – Lấy vào ống phản ứng 10 mL dung dịch thí nghiệm từ bình định mức. Lắp vào hệ thống, chú ý không lắp lệch, khí sẽ thoát ra ngoài, mất mẫu. – Khi hết thời gian cất đạm, lấy erlen ra đem chuẩn độ để xác định lượng H2SO4 01.N thừa. 3. Định phân (chuẩn độ): Lấy erlen ra khỏi máy sau khi đã tráng nước cất để lấy hết mẫu bám trên ống. Cho vào 10 giọt chỉ thị Phenolphtalein, và định phân bằng dung dịch NaOH 0,1N. 4. Xác định hệ số hiệu chỉnh K: K là tỷ số giữa nồng độ thực tế và nồng độ tính toán của NaOH. Lấy vào erlen 10 mL H2SO4 0,1N chuẩn, thêm vài giọt chỉ thị phenolphtalein 1% và định phân bằng NaOH 0,1N. Tính nồng độ thực tế của NaOH đem định phân. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 10 5. Tính kết quả: Hàm lượng phần trăm Nitơ tổng có trong mẫu được tính theo công thức sau: Trong đó: N – hàm lượng Nitơ tính bằng phần trăm khối lượng a – số mL dung dịch chuẩn H2SO4 0,1N đem hấp thụ NH3 b – số mL NaOH 0,1N tiêu tốn cho chuẩn độ m – khối lượng mẫu đem vô cơ hóa, g. V- tổng thể tích định mức dung dịch vô cơ hóa (100mL) v- thể tích dung dịch vô cơ hóa dùng chưng cất (10mL) 0,0014 – lượng gam Nitơ ứng với 1mL H2SO4 0,1N K – Hệ số điều chỉnh nồng độ NaOH 0,1N mv VbKaN × ×××− = 1000014,0)( TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 11 BÀI 3 : PHẦN I: ĐỊNH LƯỢNG LIPIT TỔNG THEO PHƯƠNG PHÁP SOXHLET I. Nguyên tắc: Dùng dung môi kỵ nước trích ly hoàn toàn lipit từ nguyên liệu đã được nghiền nhỏ. Một số thành phần hòa tan trong chất béo cũng được trích ly theo bao gồm sắc tố, các vitamin tan trong chất béo, các chất mùi tuy nhiên hàm lượng của chúng thấp. Do có lẫn tạp chất, phần trích ly được gọi là lipit tổng hay dầu thô. Hàm lượng lipit tổng có thể tính bằng cách cân trực tiếp lượng dầu sau khi chưng cất loại sạch dung môi hoặc tính gián tiếp từ khối lượng bã còn lại. Ưu điểm của cách tính gián tiếp là có thể đồng thời trích ly nhiều mẫu trong cùng một trụ chiết. II. Dụng cụ thiết bị: Bộ Soxhlet (bình cầu, trụ chiết, ống sinh hàn), Tủ sấy 105oC, cân phân tích Cối chày sứ, bình hút ẩm, giấy lọc gấp thành túi đựng nguyên liệu. Một bóng đèn 100w làm nguồn nhiệt III. Hoá chất: Dung môi trích ly lipit: diethyl ether hoặc ether petrol. Dung môi ether phải không chứa peroxyt, nước, rượu và có độ sôi khoảng 40 – 50oC. Xử lý ether như sau: Ether: 500mL TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 12 Dung dịch NaOH hay KOH 40%: 5mL Dung dịch KMnO4 4%:50mL Để trong 24 giờ, thỉnh thoảng lắc đều, sau đó rửa 4 – 5 lần nước cất, loại bỏ nước bằng phễu chiết, cho thêm 50g Na2SO4 khan và để trong 24 giờ, chưng cất ether, bảo quản trong chai thủy tinh màu. IV. Tiến hành trích ly lipit: Sấy khô nguyên liệu đến khối lượng không đổi. Cân chính xác 5g nguyên liệu đã được nghiền nhỏ, cho vào bao giấy đã được sấy khô và biết khối lượng. Chú ý gói mẫu phải có bề rộng nhỏ hơn đường kính ống trụ và chiều dài ngắn hơn chiều cao ống chảy tràn. Dùng bút chì viết lên bao giấy khối lượng bì và mẫu. Đặt bao giấy vào trụ chiết. Lắp trụ chiết vào bình cầu và gắn ống sinh hàn. Qua đầu ống sinh hàn, dùng phễu cho dung môi vào trụ chiết sao cho một lượng dung môi đã chảy xuống bình cầu và một lượng trên phễu chiết còn đủ ngập mẫu. Dùng bông làm nút đầu ống sinh hàn. Mở nước lạnh vào ống sinh hàn. Mở công tắc đèn và bắt đầu trích lipit. Điều chỉnh nhiệt độ trích sao cho chu kỳ hoàn lưu của dung môi đạt từ 5 đến 8 lần trong một giờ. Chiết trong 8 ÷12h cho đến khi trích ly hoàn toàn hết chất béo. Thử bằng cách lấy vài giọt ether ở cuối ống xiphông nhỏ lên tấm kính hoặc gạch men, dung môi bay hơi không để lại vết dầu loang thì kết thúc. Cho ether chảy xuống hết bình cầu. Lấy bao giấy ra, đặt dưới tủ hotte cho bay hơi hết ether ở nhiệt độ thường rồi cho vào tủ sấy, sấy ở 100 ÷1050C trong 1,5h. Để nguội trong bình hút ẩm, cân xác định khối lượng. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 13 Hình : Bộ Soxhlet V. Tính kết quả: Hàm lượng phần trăm chất béo tính theo công thức: X = (M1 – M2)x 100/ m Trong đó: M1: khối lượng bao giấy và mẫu ban đầu, g M2: khối lượng bao giấy và mẫu sau khi trích lipit và sấy khô, g m: khối lượng mẫu ban đầu, g TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 14 PHẦN II: XÁC ĐỊNH CÁC CHỈ SỐ CỦA CHẤT BÉO I. Xác định chỉ số axit: 1. Phạm vi áp dụng: Phương pháp này áp dụng cho dầu mỡ động, thực vật, không áp dụng cho các loại sáp. 2. Định nghĩa: Chỉ số axit (Av) được tính bằng số mg KOH cần để trung hòa hết lượng axit béo tự do có trong 1 gam chất béo. Chỉ số axit dự báo về khả năng bảo quản sản phẩm và cho biết mức độ bị thuỷ phân của chất béo. 3. Nguyên tắc: Trung hòa lượng axit béo tự do có trong chất béo bằng dung dịch KOH, phản ứng xảy ra: RCOOH + KOH RCOOK + H2O 4. Dụng cụ: Burrette10mL hoặc 25mL, có khoảng chia độ 0,05mL, erlen 100mL nút nhám, becher 100mL, ống đong 25mL 5. Hóa chất: Diethyl ether, rượu ethylic 960 Dung dịch KOH 0,1N hoặc KOH 0,05N trong rượu, đã được chuẩn bị trước ít nhất là một ngày và được gạn vào chai nâu đậy kín. Dung dịch phải không màu hay có màu vàng nhạt. Phenolphtalein (hoặc thymolphtalein) 1% trong rượu. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 15 6. Cách tiến hành: Lấy vào erlen sạch khô chính xác khoảng 5g chất béo. Thêm 20mL hỗn hợp ether ethylic-rượu ethylic (1:1) để hòa tan chất béo. Đối với mẫu rắn, khó tan có thể gia nhiệt nhẹ trên nồi cách thủy, lắc đều. Chuẩn độ hỗn hợp bằng dung dịch KOH 0,05N trong rượu với 5 giọt chỉ thị phenolphtalein 1% cho đến khi dung dịch có màu hồng bền trong 30 giây. Trường hợp chất béo có màu thẫm thì dùng chỉ thị thymolphtalein (1mL), kết thúc chuẩn độ khi xuất hiện màu xanh. 7. Tính kết quả: Chỉ số Axit tính theo công thức: V – thể tích dung dịch KOH dùng định phân, mL T – hệ số hiệu chỉnh nồng độ của dung dịch KOH sử dụng, T = 1 nếu pha từ ống chuẩn. m – lượng mẫu thí nghiệm, g 2,8055 – số mg KOH có trong 1mL KOH 0,05N II. Xác định chỉ số peroxyt: (Theo TCVN 6021: 1996 ISO 3960: 1977 ) 1. Định nghĩa: Chỉ số Peroxyt (PoV) là số mili-đương lượng của oxy hoạt hóa có trong 1 kilogram mẫu thử. Chỉ số Peroxyt biểu thị cho mức độ bị oxy hóa của chất béo. m TVAV ××= 8055,2 TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 16 2. Nguyên tắc: Các peroxyt tạo thành trong quá trình ôi hóa của chất béo, trong môi trường axit có khả năng phản ứng với KI giải phóng Iod theo phản ứng: R1-CH-CH-R2 + 2KI + 2CH3COOH R1-CH-CH-R2 + 2CH3COOK + H2O + I2 O O O Định phân Iod tạo thành bằng dung dịch thiosulfate natri: 2Na2S2O3 + I2 2NaI + Na2S4O6 Chỉ số peroxyt được tính bằng số mili- đương lượng natri thiosulfate kết hợp hết với1ượng Iod được giải phóng. 3. Dụng cụ: Cân phân tích, burrette 10mL hay 25mL, chia vạch 0,1mL, erlen nút nhám 100mL, ống đong 50mL, pipette 1mL 4. Hóa chất: Cloroform (P). Axit Axetic băng (P). Dung dịch hồ tinh bột 0,1% Dung dịch Na2S2O3 0,01N hay 0,002N, được pha từ ống chuẩn. Dung dịch KI bão hòa, được pha mới và làm sạch khỏi Iodat và I2 tự do. Để kiểm tra dung dịch KI bão hòa, thêm hai giọt hồ tinh bột vào 0,5mL dung dịch KI trong 30mL dung dịch CH3COOH:CHCl3 theo tỷ lệ 3: 2, nếu có màu xanh mà phải thêm hơn một giọt Na2 S2O3 0,01N thì bỏ dung dịch KI này và chuẩn bị dung dịch mới. 5. Tiến hành: Cân vào erlen có nút nhám chính xác khoảng 3 – 5 g chất béo. Hòa tan mẫu thử bằng 10mL chloroform (CHCl3), thêm 15mL axit axetic hoặc TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 17 cho vào 15 – 30 mL hỗn hợp chloroform – axit axetic băng (tỷ lệ 1: 2). Thêm 1mL dung dịch KI bão hòa. Đậy kín erlen ngay. Lắc trong một phút và để yên chính xác 5 phút ở nơi tối TO= 15 – 25OC (theo ISO) hoặc lắc và để yên bình vào chỗ tối 1 phút (theo AOCS). Thêm 30mL nước cất, lắc mạnh, thêm 5 giọt hồ tinh bột 1% làm chất chỉ thị. Chuẩn độ Iod tạo thành bằng dung dịch Na2S2O3 0,002N nếu mẫu có chỉ số Peroxyt nhỏ, hoặc dung dịch Na2S2O3 0,01N cho mẫu có chỉ số Peroxyt lớn hơn 12 meq/kg, đến khi mất màu tím đặc trưng của Iod. Lặp lại thí nghiệm 3 lần. Tiến hành đồng thời thí nghiệm kiểm chứng, thay chất béo bằng 3 – 5 mL nước cất. Nếu kết quả của mẫu trắng vượt quá 0,1mL dung dịch Na2S2O3 0,01N thì đổi hóa chất do không tinh khiết. 6. Tính kết quả: m NTVVPoV 1000)( 21 ×××−= Với: PoV – chỉ số peroxyt, Meq / Kg V1 – số mL Na2S2O3 dùng định phân mẫu thí nghiệm V2 – số mL Na2S2O3 dùng định phân mẫu kiểm chứng T – hệ số hiệu chỉnh nồng độ của Na2S2O3, T=1 nếu pha từ ống chuẩn m – khối lượng mẫu thí nghiệm, g N – nồng độ đương lượng gam của Na2S2O3 Phép thử được tiến hành trong ánh sáng ban ngày khuyếch tán hoặc ánh sáng nhân tạo, tránh tia cực tím. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 18 Bài 4 PHẦN 1: XÁC ĐỊNH HOẠT TÍNH ENZYM AMYLASE THEO WOHLGEMUTH I. Nguyên tắc: Phương pháp dựa vào tìm nồng độ enzym thấp nhất có thể thủy phân tinh bột đến erytrodextrin. Đơn vị Wohlgemuth là lượng enzym cần thiết để thủy phân 1 mg tinh bột sau 30 phút ở 370C có Cl- làm chất hoạt hóa. II. Dụng cụ và hoá chất: 11 ống nghiệm, pipet 1ml (4 cái), tủ ấm, NaCL 0,5%, tinh bột 0,5%, H2SO4 10%, Iod 0,3% trong KI 3%. III. Tiến hành: 1. Chuẩn bị dịch chiết amylase. Cân 10 g malt (hạt đại mạch), đem nghiền nhuyễn, chuyển vào bình định mức 100ml, định mức đến 100ml, lắc thất kỹ. Ngâm 15 phút, thỉnh thoảng lắc đều bình định mức. Lọc qua 2 tờ giấy lọc mịn, thu được dịch trong suốt chứa enzym amylase. 2. Tiến hành khảo sát hoạt tính amylase. Lấy 10 ống nghiệm đánh số thứ tự. Hút vào mỗi ống nghiệm 1 ml dung dịch NaCl 0,5%. Trong ống nghiệm 1 cho vào 1ml dung dịch amylase và lắc kỹ. Sau đó lấy 1 ml từ ống nghiệm 1 cho vào ống nghiệm TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 19 2, lắc kỹ và lắp lại cho tới ống nghiệm 10 thì hút 1ml và bỏ đi. Trong mỗi ống nghiệm cho vào 1 ml dung dịch hồ tinh bột 0,5% lắc đễu, để vào tủ điều nhiệt ở 370C. Sau 30 phút lấy ra, thêm vào mỗi ống 1 ml H2SO4 10% và 2 giọt iod trong KI lắc đều. Kết quả được thể hiện trong bảng, có đánh dấu xanh ( x ), đỏ ( đ) , nâu ( n ), vàng (v ). Ống nghiệm 1 2 3 4 5 6 7 8 9 10 Độ pha loãng 2 4 8 16 32 64 128 256 512 1024 Nồng độ enzym n/2 n/4 n/8 n/16 n/32 n/64 n/128 n/256 n/512 n/1024 Màu Lấy 1 ống nghiệm khác (ống thứ 11) cho vào 3 ml nước cất, 2 giọt thuốc thử Iod và so sánh với màu của 10 ống nghiệm trên để xác định ống có nồng độ enzym amylase thấp nhất thủy phân hoàn toàn tinh bột. 3. Tính kết quả: – Lượng enzym được cho vào ống nghiệm (1): 2 1 V Vm n × = Trong đó: V1- Thể tích dịch chiết enzym cho vào ống nghiệm (1) (1ml) V2- Thể tích dịch chiết enzym (100 ml ) m- Lượng mẫu cân vật phẩm chứa enzym (mg) TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 20 Một đơn vị Wohlgemuth (W): 5× = F nW Trong đó : F- Độ pha loãng của ống nghiệm có nồng độ enzym thấp nhất thủy phân hoàn toàn tinh bột (Ống nghiệm có màu trùng với màu của ống nghiệm 11). Số đơn vị Wohlgemuth có trong 1 ml dịch chiết enzym ( NW): WV nNW × = 1 PHẦN 2: XÁC ĐỊNH HÀM LƯỢNG VITAMIN C I. Nguyên tắc: Acid ascorbic (Vitamin C) là một hợp chất chưa no có chứa nhóm endiol. Acid ascorbic bị phá hủy rất nhanh dưới tác dụng của các chất oxy hóa và bền trong môi trường acid. Phương pháp dựa trên nguyên tắc là acid ascorbic có khả năng oxy hóa khử thuận nghịch nhờ trong phân tử của nó chứa nhóm endiol. C C OHOH Vì vậy acid ascorbic được xác định bằng phương pháp chuẩn độ với KIO3/KI theo các phản ứng sau: TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 21 KIO3 + 5KI + 6HCl 3I2 + 6KCl + 3H2O O C C C C C OH OH H O O C C C C C O O H O CH2OH CH2OH HO HO HH + I2 + 6HI Acid ascorbic Acid dehydroascorbic KIO3 + 5KI + 6HCl + 3C6H8O6 3C6H6O6 + 6KCl + 3H2O + 6HI II. Hoá chất- dụng cụ: – Cối chày sứ – Bình định mức 100 ml – Phễu thủy tinh Ф 6 cm – Pipette 10 ml – Cốc thủy tinh 100 ml – Burette 25 ml – Erlen 50 ml – HCl 1% – KIO3/KI 0.001N – Hồ tinh bột 1% TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 22 III. Tiến hành: Cân lấy vào cối sứ lượng mẫu thí nghiệm ( chanh, cam, sơri, ớt, cà chua) chính xác khoảng 3 g. Thêm một lượng HCl 1% vừa đủ vào cối để mẫu thí nghiệm được ngâm kín hoàn toàn trong dung dịch acid. Nghiền cẩn thận mẫu nguyên liệu. Chuyển toàn bộ hỗn hợp vào bình định mức 100 ml. Định mức đến vạch bằng dung dịch HCl 1%. Nếu mẫu ở dạng dịch lỏng, không cần qua giai đoạn nghiền, chuyển ngay vào bình định mức. Lấy vào erlen 10 ml dung dịch có chứa vitamin C từ bình định mức (nếu khó hút vì vướng bã thì đổ dung dịch có chứa vitamin C từ bình định mức ra cốc 100 ml, chờ bã nổi lên phía trên hoặc xuống dưới thì đặt đầu pipet vào khoảng giữa không vướng bã thực hiện hút mẫu), thêm vài giọt hồ tinh bột 1% và đem định phân bằng KIO3/KI 0.001N tới khi xuất hiện màu xanh đen. Tiến hành song song các mẫu kiểm chứng. Hút 10ml dung dịch HCl 1% thêm vài giọt hồ tinh bột 1% và đem định phân bằng KIO3/KI 0.001N tới khi xuất hiện màu xanh đen. Phải tiến hành ít nhất hai mẫu thí nghiệm, mỗi mẫu định phân ba lần, kết quả hai lần định phân không được sai lệch quá 0.03 ml. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 23 IV. Tính kết quả: Hàm lượng vitamin C trong mẫu thí nghiệm được tính bằng công thức: X = (a – b)x0.088x100x100 10.m Trong đó: X: Hàm lượng vitamin C (mg/100g) a: Số ml KIO3/KI 0.001N dùng định phân dịch chiết vitamin C b: Số ml KIO3/KI 0.001N dùng định phân mẫu kiểm chứng 100: Thể tích bình định mức (ml) m: Lượng mẫu thí nghiệm (g) 0.088: Số mg acid ascorbic ứng với 1 ml dung dịch KIO3/KI 0.001N

    --- Bài cũ hơn ---

  • Cách Giải Bài Tập Về Oxi Hóa Khử Hay, Chi Tiết
  • Cách Cân Bằng Phản Ứng Oxi Hóa Khử Nhanh Nhất
  • Phương Pháp Cân Bằng Các Phản Ứng Oxi Hóa Khử
  • Một Số Phương Pháp Cân Bằng Phản Ứng Oxi Hóa Khử
  • Xử Lý Nước Thải Bằng Phương Pháp Oxi Hóa
  • --- Bài mới hơn ---

  • Pomodoro Là Gì? Pomodoro Sử Dụng Sao Cho Đạt Hiệu Quả
  • Phương Pháp “quả Cà Chua” Pomodoro: Làm Việc Tập Trung, Hiệu Quả Cao Mà Không Hề Mệt Mỏi
  • Phương Pháp Làm Việc Hiệu Quả Bằng Pomodoro
  • Thu Thập Dữ Liệu Bằng Phương Pháp Phỏng Vấn
  • Ưu Nhược Điểm Của Các Phương Pháp Phỏng Vấn Phổ Biến
  • Phương pháp cân bằng pư oxi hóa khử

    Nội dung 1: Số oxi hoá, cách tính số oxi hóa của nguyên tố trong một hợp chất hóa học

    – Số oxi hóa của nguyên tố trong phân tử là điện tích của nguyên tử nguyên tố đó trong phân tử, khi giả thiết rằng liên kết giữa các nguyên tử trong phân tử là liên kết ion.

    – Quy tắc tính số oxi hóa:

    ( Trong đơn chất, số oxi hóa nguyên tố bằng 0:.

    ( Tổng đại số số oxi hoá của các nguyên tử trong phân tử (trung hoà điện) bằng 0.

    ( Tổng đại số số oxi hoá của các nguyên tử trong một ion phức tạp bằng điện tích của ion đó.

    ( Khi tham gia hợp chất, số oxi hoá của một số nguyên tố có trị số không đổi: H là +1, O là -2 …

    – Chú ý: Dấu của số oxi hoá đặt trước con số, còn dấu của điện tích ion đặt sau con số (số oxi hóa Fe+3 ; Ion sắt (III) ghi: Fe3+

    Nội dung 2: Các phương pháp cân bằng phản ứng oxi hoá khử

    Phương pháp 1: Phương pháp đại số

    – Nguyên tắc:

    Số nguyên tử của mỗi nguyên tố ở hai vế phải bằng nhau.

    – Các bước cân bằng

    Đặt ẩn số là các hệ số hợp thức. Dùng định luật bảo toàn khối lượng để cân bằng nguyên tố và lập phương trình đại số.

    Chọn nghiệm tùy ý cho 1 ẩn, rồi dùng hệ phương trình đại số để suy ra các ẩn số còn lại.

    Ví dụ: a FeS2 + b O2→ c Fe2O3 + d SO2

    Ta có: Fe : a = 2c

    S : 2a = d

    O : 2b = 3c + 2d

    Chọn c = 1 thì a=2, d=4, b = 11/2

    Nhân hai vế với 2 ta được phương trình:

    4 FeS2 + 11 O2→ 2 Fe2O3 + 8 SO2

    Phương pháp 2: phương pháp cân bằng electron

    – Nguyên tắc: dựa vào sự bảo toàn electron nghĩa là tổng số electron của chất khử cho phải bằng tổng số electron chất oxi hóa nhận.

    – Các bước cân bằng:

    Bước 1: Viết sơ đồ phản ứng với các nguyên tố có sự thay đổi số oxi hóa.

    Bước 2: Viết các quá trình: khử (cho electron), oxi hóa (nhận electron).

    Bước 3: Cân bằng electron: nhân hệ số để:

    Tổng số electron cho = tổng số electron nhận.

    (tổng số oxi hóa giảm = tổng số oxi hóa tăng).

    Bước 4: Cân bằng nguyên tố không thay đổi số oxi hoá (thường theo thứ tự:

    kim loại (ion dương):

    gốc axit (ion âm).

    môi trường (axit, bazơ).

    nước (cân bằng H2O để cân bằng hiđro).

    Bước 5: Kiểm soát số nguyên tử oxi ở 2 vế (phải bằng nhau).

    – Lưu ý:

    Khi viết các quá trình oxi hoá và quá trình khử của từng nguyên tố, cần theo đúng chỉ số qui định của nguyên tố đó.

    – Ví dụ:

    Fe + H2SO4 đặc nóng → Fe2(SO4)3 + SO2 + H2O

    Fe0 → Fe+3 + 3e

    1 x 2Fe0 → 2Fe+3 + 6e

    3 x S+6 + 2e → S+4

    2Fe + 6H2SO4 → Fe2(SO4)3 + 3SO2 + 6H20

    Phương pháp 3: phương pháp cân bằng ion – electron

    – Phạm vi áp dụng: đối với các quá trình xảy ra trong dung dịch, có sự tham gia của môi trường (H2O, dung dịch axit hoặc bazơ tham gia).

    – Các nguyên tắc:

    ( Nếu phản ứng có axit tham gia: vế nào thừa O phải thêm H+ để tạo H2O và ngược lại.

    ( Nếu phản ứng có bazơ tham gia: vế nào thừa O phải thêm H2O để tạo ra OH-

    Các bước tiến hành:

    Bước 1: Tách ion, xác định các nguyên tố có số oxi hóa thay đổi và viết các nửa phản ứng oxi hóa – khử.

    Bước 2: Cân bằng các bán phản ứng:

    Cân bằng số nguyên tử mỗi nguyên tố ở hai vế:

    Thêm H+ hay OH-

    Thêm H2O để cân bằng số nguyên tử hiđro

    Kiểm soát số nguyên tử oxi ở 2 vế (phải bằng nhau).

    Cân bằng điện tích: thêm electron vào mỗi nửa phản ứng để cân bằng điện tích

    Bước 3: Cân bằng electron: nhân hệ số để:

    Tổng số electron cho = tổng số electron nhận.

    (tổng số oxi hóa giảm = tổng số oxi hóa tăng).

    Bước 4: Cộng các nửa phản ứng ta có phương trình ion thu gọn.

    --- Bài cũ hơn ---

  • Phương Pháp Giải Nhanh Bài Tập Phương Trình Oxi Hóa
  • Xử Lý Nước Thải Bằng Phương Pháp Oxi Hóa Khử
  • Phương Pháp Ôn Thi Môn Văn Đạt Điểm Cao
  • Tài Liệu Hướng Dẫn Ôn Thi Học Sinh Giỏi Môn Văn
  • Phương Pháp Ôn Thi Học Sinh Giỏi Môn Văn
  • --- Bài mới hơn ---

  • Cách Cân Bằng Phản Ứng Oxi Hóa Khử Nhanh Nhất
  • Cách Giải Bài Tập Về Oxi Hóa Khử Hay, Chi Tiết
  • Định Lượng Đường Khử, Đường Tổng Bằng Phương Pháp Chuẩn Độ Oxy Hóa Khử Với Ferrycyanure
  • 12 Cách Cân Bằng Phương Trình Hóa Học Chuẩn Nhất
  • Chương 3. Phương Pháp Chuẩn Độ Oxy Hóa Khử
  • Nội dung 1: Số oxi hoá, cách tính số oxi hóa của nguyên tố trong một hợp chất hóa học

    o Số oxi hóa của nguyên tố trong phân tử là điện tích của nguyên tử nguyên tố đó trong phân tử, khi giả thiết rằng liên kết giữa các nguyên tử trong phân tử là liên kết ion.

    o Quy tắc tính số oxi hóa:

    * Trong đơn chất, số oxi hóa nguyên tố bằng 0:.

    Phương pháp cân bằng pư oxi hóa khử (sưu tầm+tổng hợp) Nội dung 1: Số oxi hoá, cách tính số oxi hóa của nguyên tố trong một hợp chất hóa học Số oxi hóa của nguyên tố trong phân tử là điện tích của nguyên tử nguyên tố đó trong phân tử, khi giả thiết rằng liên kết giữa các nguyên tử trong phân tử là liên kết ion. Quy tắc tính số oxi hóa: Trong đơn chất, số oxi hóa nguyên tố bằng 0:. Tổng đại số số oxi hoá của các nguyên tử trong phân tử (trung hoà điện) bằng 0. Tổng đại số số oxi hoá của các nguyên tử trong một ion phức tạp bằng điện tích của ion đó. Khi tham gia hợp chất, số oxi hoá của một số nguyên tố có trị số không đổi: H là +1, O là -2 … Chú ý: Dấu của số oxi hoá đặt trước con số, còn dấu của điện tích ion đặt sau con số (số oxi hóa Fe+3 ; Ion sắt (III) ghi: Fe3+ Nội dung 2: Các phương pháp cân bằng phản ứng oxi hoá khử Phương pháp 1: Phương pháp đại số Nguyên tắc: Số nguyên tử của mỗi nguyên tố ở hai vế phải bằng nhau. Các bước cân bằng Đặt ẩn số là các hệ số hợp thức. Dùng định luật bảo toàn khối lượng để cân bằng nguyên tố và lập phương trình đại số. Chọn nghiệm tùy ý cho 1 ẩn, rồi dùng hệ phương trình đại số để suy ra các ẩn số còn lại. Ví dụ: a FeS2 + b O2→ c Fe2O3 + d SO2 Ta có: Fe : a = 2c S : 2a = d O : 2b = 3c + 2d Chọn c = 1 thì a=2, d=4, b = 11/2 Nhân hai vế với 2 ta được phương trình: 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 Phương pháp 2: phương pháp cân bằng electron Nguyên tắc: dựa vào sự bảo toàn electron nghĩa là tổng số electron của chất khử cho phải bằng tổng số electron chất oxi hóa nhận. Các bước cân bằng: Bước 1: Viết sơ đồ phản ứng với các nguyên tố có sự thay đổi số oxi hóa. Bước 2: Viết các quá trình: khử (cho electron), oxi hóa (nhận electron). Bước 3: Cân bằng electron: nhân hệ số để: Tổng số electron cho = tổng số electron nhận. (tổng số oxi hóa giảm = tổng số oxi hóa tăng). Bước 4: Cân bằng nguyên tố không thay đổi số oxi hoá (thường theo thứ tự: kim loại (ion dương): gốc axit (ion âm). môi trường (axit, bazơ). nước (cân bằng H2O để cân bằng hiđro). Bước 5: Kiểm soát số nguyên tử oxi ở 2 vế (phải bằng nhau). Lưu ý: Khi viết các quá trình oxi hoá và quá trình khử của từng nguyên tố, cần theo đúng chỉ số qui định của nguyên tố đó. Ví dụ: Fe + H2SO4 đặc nóng → Fe2(SO4)3 + SO2 + H2O Fe0 → Fe+3 + 3e 1 x 2Fe0 → 2Fe+3 + 6e 3 x S+6 + 2e → S+4 2Fe + 6H2SO4 → Fe2(SO4)3 + 3SO2 + 6H20 Phương pháp 3: phương pháp cân bằng ion – electron Phạm vi áp dụng: đối với các quá trình xảy ra trong dung dịch, có sự tham gia của môi trường (H2O, dung dịch axit hoặc bazơ tham gia). Các nguyên tắc: Nếu phản ứng có axit tham gia: vế nào thừa O phải thêm H+ để tạo H2O và ngược lại. Nếu phản ứng có bazơ tham gia: vế nào thừa O phải thêm H2O để tạo ra OH- Các bước tiến hành: Bước 1: Tách ion, xác định các nguyên tố có số oxi hóa thay đổi và viết các nửa phản ứng oxi hóa – khử. Bước 2: Cân bằng các bán phản ứng: Cân bằng số nguyên tử mỗi nguyên tố ở hai vế: Thêm H+ hay OH- Thêm H2O để cân bằng số nguyên tử hiđro Kiểm soát số nguyên tử oxi ở 2 vế (phải bằng nhau). Cân bằng điện tích: thêm electron vào mỗi nửa phản ứng để cân bằng điện tích Bước 3: Cân bằng electron: nhân hệ số để: Tổng số electron cho = tổng số electron nhận. (tổng số oxi hóa giảm = tổng số oxi hóa tăng). Bước 4: Cộng các nửa phản ứng ta có phương trình ion thu gọn. Bước 5: Để chuyển phương trình dạng ion thu gọn thành phương trình ion đầy đủ và phương trình phân tử cần cộng vào 2 vế những lượng bằng nhau các cation hoặc anion để bù trừ điện tích. Ví dụ: Cân bằng phương trình phản ứng: Cu + HNO3 → Cu(NO3)2 + NO + H2O Bước 1: Cu + H+ + NO3- → Cu2+ + 2NO3- + NO + H2O Cu0 → Cu2+ NO3- → NO Bước 2: Cân bằng nguyên tố: Cu → Cu2+ NO3- + 4H+ → NO + 2H2O Cân bằng điện tích Cu → Cu2+ + 2e NO3- + 4H+ + 3e → NO + 2H2O Bước 3: Cân bằng electron: 3 x Cu → Cu2+ + 2e 2 x NO3- + 4H+ + 3e → NO + 2H2O Bước 4: 3Cu + 2NO3- + 8H+ → 3Cu2+ + 2NO + 4H2O Bước 5: 3Cu + 8HNO3 → 3Cu(NO3)2 + 2NO +4H2O Nội dung 3: Các dạng phản ứng oxi hóa khử phức tạp 1. Phản ứng oxi hoá khử có hệ số bằng chữ Nguyên tắc: Cần xác định đúng sự tăng giảm số oxi hoá của các nguyên tố Ví dụ: Fe3O4 + HNO3 → Fe(NO3)3 + NxOy + H20 (5x – 2y) x 3Fe+8/3 → 3Fe+9/3 + e 1 x xN+5 + (5x – 2y)e → xN+2y/x (5x-2y)Fe3O4+ (46x-18y)HNO3 → (15x-6y)Fe(NO3)3+NxOy+(23x-9y)H2O 2. Phản ứng có chất hóa học là tổ hợp của 2 chất khử Nguyên tắc : Cách 1 : Viết mọi phương trình biểu diễn sự thay đổi số oxi hoá, chú ý sự ràng buộc hệ số ở hai vế của phản ứng và ràng buộc hệ số trong cùng phân tử. Cách 2 : Nếu một phân tử có nhiều nguyên tố thay đổi số oxi hoá có thể xét chuyển nhóm hoặc toàn bộ phân tử, đồng thời chú ý sự ràng buộc ở vế sau. Luyện tập: Cân bằng phản ứng sau : FeS2 + O2 → Fe2O3 + SO2 Fe+2 → Fe+3 + 1e 2S-1 → 2S+4 + 2.5e 4 x FeS2 → Fe+3 +2S+4 + 11e 11 x 2O0 + 4e → 2O 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 3. Phản ứng có nguyên tố tăng hay giảm số oxi hoá ở nhiều nấc Nguyên tắc : Cách 1 : Viết mọi phương trình thay đổi số oxi hoá, đặt ẩn số cho từng nấc tăng, giảm số oxi hoá. Cách 2 : Tách ra thành hai hay nhiều phương trình ứng với từng nấc số oxi hóa tăng hay giảm. Ví dụ: Cân bằng phản ứng sau: Al + HNO3 → Al(NO3)3 + NO + N2O + H2O Cách 1: (3x + 8y) x Al0 → Al+3 + 3e 3 x xN+5 + 3xe → xN+5 3 x 2yN+5 + 8ye → 2yN+1 (3x+8y)Al +(12x+30y)HNO3→(3x+8y)Al(NO3)3+3xNO+3yNO2+(6x+15y)H2O Cách 2: Tách thành 2 phương trình : a x Al + 4HNO3 → Al(NO3)3 + NO + 2H2O b x 8Al + 30 HNO3 → 8Al(NO3)3 +3N2O + 15H2O (a+8b)Al + (4a+30b)HNO3 → (a+8b)Al(NO3)3 + a NO + 3b N2O+(2a+15b)H2O 4. Phản ứng không xác định rõ môi trường Nguyên tắc: Có thể cân bằng nguyên tố bằng phương pháp đại số hoặc qua trung gian phương trình ion thu gọn. Nếu do gom nhiều phản ứng vào, cần phân tích để xác định giai đoạn nào là oxi hóa khử. Ví dụ: Al + H2O + NaOH → NaAlO2 + H2 Al + H20 → Al(OH)3 + H2 2 x Al0 → Al+3 + 3e 3 x 2H+ + 2e → H2 2Al + 6H20 → 2Al(OH)3 + H2 (1) 2Al(OH)3 + 2NaOH → 2NaAlO2 + 4H20 (2) Tổng hợp 2 phương trình trên: 2Al + 2NaOH + 2H2O → 2NaAlO2 + 3H2

    --- Bài cũ hơn ---

  • Một Số Phương Pháp Cân Bằng Phản Ứng Oxi Hóa Khử
  • Xử Lý Nước Thải Bằng Phương Pháp Oxi Hóa
  • Việt Nam Bổ Sung Phương Pháp Xét Nghiệm Ncov Mới
  • Pcr Nguyên Tắc Và Ứng Dụng
  • Pcr Là Gì? Nguyên Tắc, Qúa Trình & Ứng Dụng Của Máy Chu Kỳ Nhiệt
  • --- Bài mới hơn ---

  • Phương Pháp Chuẩn Độ Oxi Hóa Khử Bromat
  • Một Số Phương Pháp Cân Bằng Phản Ứng Oxi Hóa
  • Phản Ứng Oxi Hoá Khử, Cách Lập Phương Trình Hoá Học Và Bài Tập
  • Phương Pháp Quản Trị Thời Gian Quả Cà Chua Pomodoro
  • Tự Học Tiếng Đức Với Phương Pháp “quả Cà Chua” Pomodoro
  • CÁC PHƯƠNG PHÁP CÂN BẰNG PHẢN ỨNG OXI HÓA KHỬ

    III CÁC PHƯƠNG PHÁP CÂN BẰNG PHẢN ỨNG OXI HÓA KHỬ Nguyên tắc chung để cân bằng phản ứng oxi hóa khử là số điện tử cho của chất khử phải bằng số điện tử nhận của chất oxi hóa hay số oxi hóa tăng của chất khử phải bằng số oxi hóa giảm của chất oxi hóa. III.1. PHƯƠNG PHÁP CÂN BẰNG ĐIỆN TỬ (THĂNG BẰNG ELECTRON) Thực hiện các giai đoạn: + Viết phương trình phản ứng xảy ra với đầy đủ tác chất, sản phẩm (nếu đầu bài yêu cầu bổ sung phản ứng, rồi mới cân bằng). + Tính số oxi hóa của nguyên tố có số oxi hóa thay đổi. Nhận diện chất oxi hóa, chất khử. + Viết phản ứng cho, phản ứng nhận điện tử (Phản ứng oxi hóa, phản ứng khử). Chỉ cần viết nguyên tử của nguyên tố có số oxi hóa thay đổi, với số oxi hóa được để bên trên. Thêm hệ số thích hợp để số nguyên tử của nguyên tố có số oxi hóa thay đổi hai bên bằng nhau. + Cân bằng số điện tử cho, nhận. Số điện tử cho của chất khử bằng số điện tử nhận của chất oxi hóa (Hay số oxi hóa tăng của chất khử bằng số oxi hóa giảm của chất oxi hóa) bằng cách thêm hệ số thích hợp. + Phối hợp các phản ứng cho, nhận điện tử; các hệ số cân bằng tìm được; và phản ứng lúc đầu để bổ sung hệ số thích hợp vào phản ứng lúc đầu. + Cuối cùng cân bằng các nguyên tố còn lại (nếu có) như phản ứng trao đổi. Các thí dụ: Cân bằng các phản ứng sau đây theo phương pháp cân bằng điện tử. Thí dụ 1 +7 +2 +2 +3 KMnO4 + FeSO4 + H2SO4 MnSO4 + Fe2(SO4)3 + K2SO4 + H2O Chất oxi hóa Chất khử +7 +2 2 Mn +5e- Mn (phản ứng khử) +2 +3 5 2Fe -2e- 2Fe (Phản ứng oxi hóa) (+4) (+6) 2KMnO4 + 10FeSO4 + H2SO4 2MnSO4 + 5Fe2(SO4)3 + K2SO4 + H2O 22 2KMnO4 + 10FeSO4 + 8H2SO4 2MnSO4 + 5Fe2(SO4)3 + K2SO4 + 8H2O Thí dụ 2: +8/3 +5 +3 +2 Fe3O4 + HNO3 Fe(NO3)3 + NO + H2O Chất khử Chất oxi hóa +8/3 +3 3 3Fe – e- 3Fe (Phản ứng oxi hóa) (+8) (+9) +5 +2 N + 3e- N (Phản ứng khử) 3Fe3O4 + HNO3 9Fe(NO3)3 + NO + H2O 3Fe3O4 + 28HNO3 9Fe(NO3)3 + NO + 14H2O [ Trong 28 phân tử HNO3 của tác chất, chỉ có 1 phân tử là chất oxi hóa thật sự, còn 27 phân tử tham gia trao đổi (tạo môi trường axit, tạo muối nitrat) ] Thí dụ 3: +2 -1 0 +3 -2 +4 -2 FeS2 + O2 Fe2O3 + SO2 Chất khử Chất oxi hóa Pirit sắt, Sắt (II) pesunfua +2 +3 2Fe -2e- 2Fe (Phản ứng oxi hóa) (+4) (+6) 2 -22e-1 +4 4S – 20e- 4S (Phản ứng oxi hóa) (-4) (+16) 0 -2 11 O 2 + 4e- 2O (Phản ứng khử) (0) (-4) 4FeS2 + 11O2 t0 2Fe2O3 + 8SO2 Thí dụ 4: +2y/x +5 +3 +2 FexOy + HNO3 Fe(NO3)3 + NO + H2O Chất khử ⇐ Chất oxi hóa +2y/x +3 3 xFe – (3x-2y)e- xFe (Phản ứng oxi hóa) (+2y) (+3x) +5 +2 (3x-2y) N +3e- N (Phản ứng khử) 23 3FexOy + …

    --- Bài cũ hơn ---

  • Các Câu Hỏi Thường Gặp Và Khái Niệm Về Chuẩn Độ
  • Bài Tập Cân Bằng Phương Trình Phản Ứng Oxi Hóa Khử
  • Xem Phương Pháp Giải Nhanh Bài Tập Phương Trình Oxi Hóa
  • Phương Pháp, Cách Cân Bằng Phản Ứng Oxi Hóa Khử Hay, Chi Tiết
  • Chuẩn Độ, Chuẩn Độ Oxi Hóa Khử, Giảng Dạy Hóa Học, Hóa Học Nhà Trường, Chất Oxi Hóa, Permanganat
  • --- Bài mới hơn ---

  • Phương Pháp Giải Nhanh Bài Tập Phương Trình Oxi Hóa
  • Phương Pháp Cân Bằng Oxi Hóa Khử
  • Pomodoro Là Gì? Pomodoro Sử Dụng Sao Cho Đạt Hiệu Quả
  • Phương Pháp “quả Cà Chua” Pomodoro: Làm Việc Tập Trung, Hiệu Quả Cao Mà Không Hề Mệt Mỏi
  • Phương Pháp Làm Việc Hiệu Quả Bằng Pomodoro
  • Nhà máy xử lý nước thải bằng phương pháp oxi hóa khử

    Nguyên lý hoạt động khi xử lý nước thải bằng phương pháp oxi hóa khử

    Trong phản ứng hóa học thì phản ứng oxi hóa khử là một phản ứng cho và nhận các electron. Sự khử là sự phản ngược lại với sự oxi hóa và oxi hóa khử chính là hai quá trình trong một phản ứng. Nếu như có một chất oxi hóa thì chất khác còn lại sẽ là chất khử. Một chất nếu như có khả năng làm mất các electron của chất khác càng mạnh thì khả năng oxi hóa của nó càng cao.

    Một trong các tác nhân chính để được sử dụng oxy hóa là những chất sau : O3, Cl2, HCLO, CA(CLO)2, NaCLO, CaCL2.2H2O, v.v.

    Ví dụ phản ứng hóa học về việc xử lý bằng oxi hóa là phản ứng oxi hóa xyanua

    Để làm cho loại chất độc xyanua này thành không độc và để nó phân hủy thành khí CO2 với khí nitơ, người ta đã thực hiện việc oxi hóa với O3, CL2… Phản ứng oxi hóa của xyanua với Cl2 được biểu diễn như sau:

    Phản ứng bậc một của phương trình khi chuyển NaCN vào NaOCN là nhờ Cl2, đây là một chất có lượng độc tính nhỏ ( chỉ 1/1000 của NaCN). Phản ứng này sẽ kết thúc trong vòng từ 5 – 10 phút và ở tại pH = 10,5. Phản ứng bậc hai sẽ phân hủy hợp chất NaOCN thành CO2 và N2. Độ pH phù hợp sẽ là 7 – 8 và thời gian phản ứng của nó sẽ là 30 phút.

    Xử lý của oxi hóa trên được gọi là “phương pháp Cl2 kiềm” và sẽ thường được sử dụng trong khi xử lý chất xyanua.

    Điện hóa là một cách trong xử lý nước thải

    Các tác nhân khử được sau đây để sử dụng là ion sắt, H2SO4, FeSO4, SO2, NaHSO3, v..v.

    Ví dụ về một việc khi xử lý nước thải bằng cách dùng phản ứng khử là ít với phản ứng khử crom có hóa trị VI là một phản ứng tiêu biểu.

    Không giống với các kim loại khác thì crom (VI) sẽ không tạo ra các hidroxit để kết tủa như được thể hiện trong phương trình sau, thậm chí khi cả ở trong điều kiện kiềm:

    (có màu da cam đỏ) (có màu vàng )

    Ion dicromat nếu như ở trong điều kiện kiềm để trở thành ion cromat thì sẽ là một chất ổn định, sẽ không kết tủa và nếu trong điều kiện axit nó sẽ trở lại thành ion dicromat. Do vậy, ion crom (VI) sẽ được khử bằng ion sắt (II),…và trở thành ion crom (III), sau đó được thêm vào là chất bazơ để tạo thành hợp chất hidroxit kết tủa và sẽ được tách ra. Ví dụ của phản ứng này được trình diễn như sau:

    2H2CrO4 + 6H2SO4 + 6FeSO4 = 3Cr2(SO4)3 + Cr2(SO4)3 + 8H2O

    6NaOH + Cr2(SO4)3 = 3Na2SO4 + 2Cr(OH)3

    Cách xử lý nước thải bằng phương pháp oxi hóa khử

    Xử lý nước thải bằng phương pháp oxi hóa khử

    Phụ thuộc vào những thành phần bản chất của nguồn bị ô nhiễm thì các tạp chất bị nhiễm bẩn có các tính chất khác nhau và thành phần hóa học khác nhau. Có các loại là tạp chất tan, có chất không tan, việc mà để xử lý nước thải sinh hoạt chính là để loại bỏ đi các tạp chất đó, làm sạch nước lại và có thể đưa loại nước đã làm sạch này vào nguồn tiếp nhận hoặc có thể đưa vào tái sử dụng lại được. Việc lựa chọn một phương pháp xử lý phù hợp thường được căn cứ ở trên đặc điểm của những loại tạp chất mà nó có trong nước thải: các thành phần tính chất, những nguồn gây ô nhiễm để có những phương pháp xử lý riêng.

    Có rất nhiều phương pháp khác nhau trong việc xử lý nguồn nước thải thì trong đó đã có sử dụng phương pháp hóa học vào cho việc xử lý nước thải sinh hoạt. Đây đang là một biện pháp tối ưu nhất trong việc bảo vệ môi trường nước. Phương pháp xử lý hóa học mà thường được dùng trong hệ thống xử lý các nguồn nước thải sinh hoạt gồm có: trung hòa, tạo kết tủa, oxi hóa khử hoặc phản ứng phân hủy của các hợp chất độc hại có trong phản ứng. Trong đó việc mà xử lý nước thải bằng phương pháp oxi hóa khử sẽ làm giảm được sự ô nhiễm nguồn nước:

    – Muốn làm sạch nước thải thì chúng ta có thể sử dụng các chất oxi hóa hay hợp chất như chất Clo ở dạng khí và hóa lỏng, clorat canxi, dioxit clo, pemanganat kali, ozon, oxi không khí, …

    Chất Clo và các chất có chứa cả clo hoạt tính là một chất oxi hóa mang lại hiệu quả và được sử dụng rộng rãi, phổ biến nhất. Chúng sẽ được sử dụng khi để tách H2S, hidrosunfit và các hợp chất có chứa metyl sunfit, xyanua, phenol ra khỏi nguồn nước thải. Sau khi đã quá trình oxi hóa clo các hóa chất độc hại bị ô nhiễm đã được tách riêng ra khỏi nước thải thì quá trình này sẽ được diễn ra theo phản ứng giữa chất clo và nước thải.

    Như vậy thì trong tại quá trình xử lý nước thải bằng phương pháp oxi hóa khử thực chất chính là sử dụng những chất hóa học phù hợp cho tác dụng với những chất bẩn hay tạp chất mà nó có trong nước thải để tạo thành một hợp chất hòa tan có ít độc hoặc không độc đối với môi trường hay tạo ra những chất lắng đọng để dễ dàng xử lý.

    Hệ thống xử lý nước thải bằng phương pháp oxi hóa khử

    Tags: Xử lý nước thải bằng phương pháp oxi hóa khử, Xử lý nước thải bằng phương pháp hóa lý, Xử lý nước thải bằng phương pháp điện hóa, Xử lý photpho trong nước thải bằng phương pháp hóa học, Xử lý nitơ trong nước thải bằng phương pháp hóa học, Phương pháp clo hóa nước, Bể oxy hóa, Xử lý nước thải bằng phương pháp sinh học

    --- Bài cũ hơn ---

  • Phương Pháp Ôn Thi Môn Văn Đạt Điểm Cao
  • Tài Liệu Hướng Dẫn Ôn Thi Học Sinh Giỏi Môn Văn
  • Phương Pháp Ôn Thi Học Sinh Giỏi Môn Văn
  • Trường Đại Học Khoa Học Tự Nhiên
  • Xét Nghiệm Pcr Là Xét Nghiệm Gì?
  • --- Bài mới hơn ---

  • Phương Pháp Cân Bằng Các Phản Ứng Oxi Hóa Khử
  • Cách Cân Bằng Phản Ứng Oxi Hóa Khử Nhanh Nhất
  • Cách Giải Bài Tập Về Oxi Hóa Khử Hay, Chi Tiết
  • Định Lượng Đường Khử, Đường Tổng Bằng Phương Pháp Chuẩn Độ Oxy Hóa Khử Với Ferrycyanure
  • 12 Cách Cân Bằng Phương Trình Hóa Học Chuẩn Nhất
  • Nguyên tắc chung để cân bằng phản ứng oxi hóa khử là số điện tử cho của chất khử phải bằng số điện tử nhận của chất oxi hóa hay số oxi hóa tăng của chất khử phải bằng số oxi hóa giảm của chất oxi hóa. Bài viết hướng dẫn bạn đọc một số cách cân bằng phản ứng oxi hóa khử phổ biến.

    1. Phương pháp nguyên tử nguyên tố

    Để tạo thành 1 phân tử P 2O 5 cần 2 nguyên tử P và 5 nguyên tử O:

    2. Phương pháp hóa trị tác dụng

    Hóa trị tác dụng là hóa trị của nhóm nguyên tử hay nguyên tử của các nguyên tố trong chất tham gia và tạo thành trong PUHH.

    Áp dụng phương pháp này cần tiến hành các bước sau:

    + Xác định hóa trị tác dụng:

    II – I III – II II-II III – I

    Hóa trị tác dụng lần lượt từ trái qua phải là:

    II – I – III – II – II – II – III – I

    Tìm bội số chung nhỏ nhất của các hóa trị tác dụng:

    + Lấy BSCNN chia cho các hóa trị ta được các hệ số:

    6/II = 3, 6/III = 2, 6/I = 6

    Thay vào phản ứng:

    Dùng phương pháp này sẽ củng cố được khái niệm hóa trị, cách tính hóa trị, nhớ hóa trị của các nguyên tố thường gặp.

    3. Phương pháp dùng hệ số phân số

    Đặt các hệ số vào các công thức của các chất tham gia phản ứng, không phân biệt số nguyên hay phân số sao cho số nguyên tử của mỗi nguyên tố ở hai vế bằng nhau. Sau đó khử mẫu số chung của tất cả các hệ số.

    + Nhân các hệ số với mẫu số chung nhỏ nhất để khử các phân số. Ỏ đây nhân 2.

    4. Phương pháp “chẵn – lẻ”

    Một phản ứng sau khi đã cân bằng thì số nguyên tử của một nguyên tố ở vế trái bằng số nguyên tử nguyên tố đó ở vế phải. Vì vậy nếu số nguyên tử của một nguyên tố ở một vế là số chẵn thì số nguyên tử nguyên tố đó ở vế kia phải chẵn. Nếu ở một công thức nào đó số nguyên tử nguyên tố đó còn lẻ thì phải nhân đôi.

    Đó là thứ tự suy ra các hệ số của các chất. Thay vào PTPU ta được:

    5. Phương pháp xuất phát từ nguyên tố chung nhất

    Chọn nguyên tố có mặt ở nhiều hợp chất nhất trong phản ứng để bắt đầu cân bằng hệ số các phân tử.

    Nguyên tố có mặt nhiều nhất là nguyên tố oxi, ở vế phải có 8 nguyên tử, vế trái có 3. Bội số chung nhỏ nhất của 8 và 3 là 24, vậy hệ số của HNO 3 là 24 /3 = 8

    Vậy phản ứng cân bằng là:

    6. Phương pháp cân bằng electron

    Cân bằng qua ba bước:

    a. Xác định sự thay đổi số oxi hóa.

    b. Lập thăng bằng electron.

    c. Đặt các hệ số tìm được vào phản ứng và tính các hệ số còn lại.

    Ví dụ. Cân bằng phản ứng:

    a. Xác định sự thay đổi số oxi hóa:

    (Viết số oxi hóa này phía trên các nguyên tố tương ứng)

    b. Lập thăng bằng electron:

    c. Đặt các hệ số tìm được vào phản ứng và tính các hệ số còn lại:

    Ví dụ 2. Phản ứng trong dung dịch bazo:

    Phương trình ion:

    Phương trình phản ứng phân tử:

    Ví dụ 3. Phản ứng trong dung dịch có H 2 O tham gia:

    Phương trình ion:

    Phương trình phản ứng phân tử:

    7. Phương pháp cân bằng đại số

    Dùng để xác định hệ số phân tử của chất tham gia và thu được sau phản ứng hoá học, ta coi hệ số là các ẩn số và kí hiệu bằng các chữ cái a, b, c, d… rồi dựa vào mối tương quan giữa các nguyên tử của các nguyên tố theo định luật bảo toàn khối lượng để lập ra một hệ phương trình bậc nhất nhiều ẩn số. Giải hệ phương trình này và chọn các nghiệm là các số nguyên dương nhỏ nhất ta sẽ xác định được hệ số phân tử của các chất trong phương trình phản ứng hoá học.

    Ví dụ: Cân bằng phản ứng:

    Kí hiều các hệ số phải tìm là các chữ a, b, c, d, e và ghi vào phương trình ta thu được:

    + Xét số nguyên tử Cu: a = c (1)

    + Xét số nguyên tử H: b = 2e (2)

    + Xét số nguyên tử N: b = 2c + d (3)

    + Xét số nguyên tử O: 3b = 6c + d + e (4)

    Ta được hệ phương trình 5 ẩn và giải như sau:

    Rút e = b/2 từ phương trình (2) và d = b – 2c từ phương trình (3) và thay vào phương trình (4):

    3b = 6c + b – 2c + b/2

    Ta thấy để b nguyên thì c phải chia hết cho 3. Trong trường hợp này để hệ số của phương trình hoá học là nhỏ nhất ta cần lấy c = 3. Khi đó: a = 3, b = 8, d = 2, e = 4

    Vậy phương trình phản ứng trên có dạng:

    Như vậy khi lập một hệ phương trình đại số để cân bằng một phương trình hoá học, nếu có bao nhiêu chất trong phương trình hoá học thì có bấy nhiêu ẩn số và nếu có bao nhiêu nguyên tố tạo nên các hợp chất đó thì có bấy nhiêu phương trình.

    --- Bài cũ hơn ---

  • Xử Lý Nước Thải Bằng Phương Pháp Oxi Hóa
  • Việt Nam Bổ Sung Phương Pháp Xét Nghiệm Ncov Mới
  • Pcr Nguyên Tắc Và Ứng Dụng
  • Pcr Là Gì? Nguyên Tắc, Qúa Trình & Ứng Dụng Của Máy Chu Kỳ Nhiệt
  • Khái Quát Về Kỹ Thuật Real Time Pcr Là Gì? Ứng Dụng Chẩn Đoán Bệnh Tôm
  • Tổng hợp các bài viết thuộc chủ đề Chuẩn Độ Oxi Hóa Khử Phương Pháp Iod xem nhiều nhất, được cập nhật mới nhất trên website Channuoithuy.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!

    Quảng Cáo

    Chủ đề xem nhiều


    Bài viết xem nhiều

    Hướng Dẫn Doanh Nghiệp Cách Hủy Hóa Đơn Điện Tử Đã Phát Hành

    Hướng dẫn cách hủy hóa đơn điện tử đã phát hành. 1. Khi nào cần hủy hóa đơn điện tử đã phát hành? Trước khi tìm hiểu cách hủy hóa đơn điện tử đã phát hành, bạn cần biết các hóa đơn điện tử đã phát hành cần phải hủy trong những trường hợp nào. Khi nào cần hủy hóa đơn điện tử đã phát hành? Theo quy định thì các hóa đơn dù đã phát hành nhưng khi có phát hiện sai sót thì sẽ phải tiến hành hủy bỏ. Cụ thể: – Trường hợp thứ nhất:Hóa đơn...

    Hỗ Trợ Sinh Bằng Kẹp Forceps Có Gây Hại Cho Thai Nhi Không?

    Trong trường hợp bất khả kháng, bác sỹ phải dùng kẹp forceps để hỗ trợ bạn sinh em bé an toàn. Vậy forceps mang lại lợi ích và những hạn chế gì? Hầu hết các mẹ bầu đều mong muốn sẽ vượt cạn một cách suôn sẻ. Tuy nhiên, một số lại phải nhờ đến sự hỗ trợ của dụng cụ y khoa để em bé chào đời an toàn. Kẹp forceps là một trong số đó. Mặc dù hiện nay, kẹp forceps không còn phổ biến trong việc sinh nở như trước kia, nhưng trong một số trường hợp cấp bách,...

    Nguyên Nhân Và Cách Khắc Phục Mụn Cám Ở Trán

    Mụn cám là những nốt mụn nhỏ, mọc ở lỗ chân lông và thường có màu đen hoặc trắng. Những nốt mụn cám li ti tuy không gây đau như mụn bọc nhưng là thủ phạm khiến làn da bạn sần sùi, xỉn màu. Mụn cám xuất hiện ở mọi vị trí trên da nhưng thường thấy nhất là ở trán. Vì sao nó tập trung nhiều nhất ở khu vực này và cách đối phó với mụn cám ở trán ra sao? Thay vì bị đào thải ra ngoài, các tế bào chết bị mắc kẹt trong da, cộng với...

    4 Bước Xoa Bóp Tim Ngoài Lồng Ngực Ai Cũng Phải Biết

    Ngưng tim là một trong những biểu hiện của đột quỵ. Nếu nạn nhân là người thân, bạn bè của bạn, hay thậm chí là một người xa lạ, thì ngay lúc đó, bạn làm gì? Bạn có đủ am hiêu hay bình tĩnh để xử lý tình huống? Chỉ với 5 phút, bạn đã có thể trang bị cho bản thân một kỹ năng cứu người mà ai cũng cần phải biết: xoa bóp tim ngoài lồng ngực. Khi nào thì thực hiện xoa bóp tim ngoài lồng ngực? Ngừng tim nghĩa là khi bạn áp tai vào lồng...

    Dược Sĩ Hướng Dẫn Phân Biệt Thuốc Biệt Dược Và Thuốc Generic

    Trong lĩnh vực Dược, thuốc được chia ra làm hai loại là thuốc biệt dược và thuốc generic. Vậy thuốc biệt dược và thuốc generic là gì, hai loại thuốc này có gì khác nhau? Dược sĩ Nguyễn Thị Thương, giảng viên Cao đẳng Dược Hà Nội – Trường Cao đẳng Y Dược Pasteur cho biết, khi một thuốc mới được phát triển, nhà sản xuất sẽ đặt cho loại thuốc đó một cái tên nhằm chỉ ra hoạt chất của thuốc. Tên này được gọi là tên chung hoặc tên hoạt chất. Tổ chức y tế thế giới thường đặt...

    Các Giai Đoạn Của Trầm Cảm

    Tìm hiểu về trầm cảm Trầm cảm là một dạng rối loạn tâm thần thường gặp, nó phổ biến trong cuộc sống. Theo thống kê có đến khoảng 80% dân số trên thế giới đã từng bị trầm cảm vào lúc nào đó trong cuộc đời. Tần suất nguy cơ mắc bệnh trong cuộc đời khoảng 20-25%. Bệnh có thể gặp ở bất cứ độ tuổi nào và thường phổ biến ở nữ giới hơn là nam giới. Người bệnh trầm cảm thường có tâm trạng buồn bã có thể kèm theo dấu hiệu khóc, mệt mỏi. Không có động lực...

    Rối Loạn Cảm Xúc Ở Học Sinh Thcs Và Thpt

    Thực tế cho thấy rằng, tại nước ta sự hiểu biết của đội ngũ giáo viên đối với vấn đề rối loạn tâm lý ở học sinh, trẻ em cũng như cách ứng xử phù hợp còn rất hạn chế. Vì vậy, thông qua lớp đào tạo về rối loạn cảm xúc ở học sinh THCS và THPT, chúng tôi mong muốn đạt được mục tiêu đó là giúp cán bộ quản lý và giáo viên tại các trường học nhận biết được dấu hiệu học sinh mắc chứng rối loạn cảm xúc (trầm cảm) để thấu hiểu tâm lý...

    Triệu Chứng Nguyên Nhân Và Cách Điều Trị Rụng Tóc Sau Sinh Hiệu Quả

    Mỗi lần sinh con là một lần cơ thể người phụ nữ có nhiều thay đổi lớn. Trong số đó, phải kể đến hiện tượng rụng tóc sau sinh mà hơn 90% chị em phải đối mặt. Do nhiều nguyên nhân khác nhau, tóc bị yếu dần, dẫn đến gãy rụng kéo dài từ 5 đến 6 tháng sau sinh. Và sau đó, các mảng tóc sẽ mọc trở lại nếu được chăm sóc, cung cấp dưỡng chất hàng ngày. Bởi vậy, chị em không nên quá lo lắng khi bị rụng tóc nhiều mà cần chuẩn bị cho mình...

    Rỉ Ối Trong Thai Kỳ

    10-06-2009 Tôi có thai lần thứ nhất thì có hiện tượng bị vỡ ối. Hai năm sau sau tôi mang bầu lại nhưng khi thai được 16 tuần thì lại bị rỉ ối vào bệnh viện điều trị hết. BS cho xuất viện hẹn 1 tháng tái khám. Tôi vào tái khám được biết nước ối thiểu. Theo chỉ định BS theo dõi thời gian nhưng nước ối vẫn không tạo được, bác sĩ yêu cầu người nhà cho sinh sớm(vì nước ối không còn). Vậy trường hợp tôi là như thế nào? Tôi có xét nghiệm bệnh down lúc thai...

    Tại Sao Lại Bị Nghẹt Mũi Khi Nằm Ngủ

    Nghẹt mũi khi đi ngủ là triệu chứng làm cho nhiều người khó chịu và lo lắng. Biểu hiện này làm gián đoạn giấc ngủ gây ra những biến đổi về tinh thần. Nghẹt mũi khi ngủ do nhiều nguyên nhân nào gây ra và làm gì để khắc phục tình trạng nghẹt mũi? Nghẹt mũi là tình trạng tắc nghẽn 1 hay cả 2 bên mũi, khiến cho người bệnh luôn có cảm giác khó khăn khi thở bằng mũi và thường xuyên phải thở bằng miệng. Khi bị nghẹt mũi, đa số người bệnh thường nghĩ không có...