Cách tìm tập hợp nghiệm của phương trình

Tính tích phân $I = \int\limits_1^2 {\left| {{x^2} - 3x + 2} \right|dx} $

Cho hàm số $y = f(x) = \left\{ \begin{array}{l}{x^2}\,\,\,\,\,\,\,\,\,khi\,\,0 \le x \le 1\\2 - x\,\,\,\,khi\,\,1 \le x \le 2\end{array} \right.$. Tính  tích phân $\int\limits_0^2 {f(x)dx} $.

Nếu \(\int_2^5 f (x){\rm{d}}x = 2\) thì \(\int_2^5 3 f(x){\rm{d}}x\) bằng

Để tìm tập nghiệm của phương trình logarit nhanh và chính xác, các em cần nắm vững lý thuyết và đặc biệt là phương pháp giải. Cùng VUIHOC điểm lại toàn bộ kiến thức về phương trình logarit và các cách tìm tập nghiệm nhé!

Trước khi đi vào chi tiết bài viết, VUIHOC đã đánh giá mức độ khó và nhận định tổng quan về dạng bài tìm tập nghiệm của phương trình logarit ở bảng sau:

Cách tìm tập hợp nghiệm của phương trình

Để dễ hơn trong việc ôn tập và làm bài tập, các em tải xuống file tổng hợp lý thuyết chi tiết về phương trình logarit theo link dưới đây nhé!

Tải xuống file ôn tập lý thuyết về phương trình logarit 

1. Ôn lại lý thuyết về logarit và phương trình logarit

1.1. Logarit là gì?

Để tìm tập nghiệm của phương trình logarit, ta cần nắm vững định nghĩa về logarit đầu tiên. Theo kiến thức về luỹ thừa - mũ - logarit đã học, logarit của một số là lũy thừa mà một giá trị cố định, gọi là cơ số, phải được nâng lên để tạo ra số đó. Có thể hiểu đơn giản, logarit chính là phép toán nghịch đảo của lũy thừa, hiểu 1 cách đơn giản hơn thì hàm logarit chính là đếm số lần lặp đi lặp lại của phép nhân.

Công thức chung của logarit có dạng như sau: 

Logarit có công thức là $log_ab$ trong đó $b>0$, $0

Có 3 loại logarit:

  • Logarit thập phân: là logarit có cơ số 10, viết tắt là $log_{10}b=logb(=lgb)$ có nhiều ứng dụng trong khoa học và kỹ thuật.

  • Logarit tự nhiên: là logarit có cơ số là hằng số $e$, viết tắt là $ln(b)$, $log_e(b)$ có ứng dụng nhiều trong toán học và vật lý, đặc biệt là vi tích phân.

  • Logarit nhị phân: là logarit sử dụng cơ số 2, ký hiệu là $log_2b$ có ứng dụng trong khoa học máy tính, lập trình ngôn ngữ C

  • Ngoài ra, ta còn 2 cách phân loại khác là logarit phức (là hàm ngược của hàm lũy thừa trong số phức) và logarit rời rạc (ứng dụng trong mật mã hoá khoá công khai)

1.2. Định nghĩa phương trình logarit

Với cơ số a dương và khác 1 thì phương trình có dạng như sau được gọi là phương trình logarit cơ bản: $log_ax=b$

Ta thấy vế trái của phương trình là hàm đơn điệu có miền giá trị là $\mathbb{R}$. Vế phải phương trình là một hàm hằng. Vì vậy phương trình lôgarit cơ bản luôn có nghiệm duy nhất. Theo định nghĩa của logarit ta dễ dàng suy ra nghiệm đó là $x=a^b$

1.3. Các công thức phương trình logarit cơ bản

Với điều kiện $0

Cách tìm tập hợp nghiệm của phương trình

Một số công thức biến đổi logarit vận dụng để tìm tập nghiệm của phương trình logarit được VUIHOC tổng hợp tại bảng sau đây, các em lưu ý nhé:

Cách tìm tập hợp nghiệm của phương trình

2. 4 cách tìm tập nghiệm của phương trình logarit 

2.1. Phương pháp đưa về cùng cơ số

Một lưu ý nhỏ cho các em đó là trong quá trình biến đổi để tìm tập nghiệm của phương trình logarit, chúng ta thường quên việc kiểm soát miền xác định của phương trình. Vì vậy để cho an toàn thì ngoài phương trình logarit cơ bản, các bạn nên đặt điều kiện xác định cho phương trình trước khi biến đổi.

Phương pháp giải dạng toán này như sau:

Trường hợp 1: $Log_af(x)=b$ => $f(x)=a^b$

Trường hợp 2: $Log_af(x)=log_ag(x)$ khi và chỉ khi $f(x)=g(x)$

Ta cùng xét ví dụ sau để rõ hơn về cách tìm tập nghiệm của phương trình logarit bằng cách đưa về cùng cơ số:

Cách tìm tập hợp nghiệm của phương trình

2.2. Tìm tập nghiệm của phương trình logarit bằng cách đặt ẩn phụ

Ở cách tìm tập nghiệm của phương trình logarit này, khi đặt ẩn phụ, chúng ta cần chú ý xem miền giá trị của ẩn phụ để đặt điều kiện cho ẩn phụ hoặc không. Ta có công thức tổng quát như sau:

Phương trình dạng: $Q[log_af(x)]=0$ -> Đặt $t=log_ax$ ($x$ thuộc $\mathbb{R}$)

Các em cùng VUIHOC xét ví dụ sau đây:

Cách tìm tập hợp nghiệm của phương trình

2.3. Mũ hoá giải phương trình logarit

Bản chất của việc tìm tập nghiệm của phương trình logarit cơ bản (ở trên) cũng là mũ hóa 2 vế với cơ số a. Trong 1 số trường hợp, phương trình có cả loga có cả mũ thì ta có thể thử áp dụng mũ hóa 2 vế để giải.

Phương trình $log_af(x)=log_bg(x) (a>0, a\neq 1)$

Ta đặt $log_af(x)=log_bg(x)=t$ => Hoặc $f(x)=a^t$ hoặc $g(x)=b^t$

=> Đưa về dạng phương trình ẩn $t$.

Cách tìm tập hợp nghiệm của phương trình

2.4. Dùng đồ thị tìm tập nghiệm của phương trình logarit

Giải phương trình: $log_ax=f(x) (0

  • Bước 1: Vẽ đồ thị các hàm số: $y=log_ax(0

  • Bước 2: Kết luận nghiệm của phương trình đã cho là số giao điểm của đồ thị

Ta có ví dụ minh hoạ về phương pháp tìm này như sau:

Cách tìm tập hợp nghiệm của phương trình

Cách tìm tập hợp nghiệm của phương trình

3. Bài tập áp dụng

Để thành thạo hơn trong việc tìm tập nghiệm của phương trình logarit, các em hãy tải file bài tập chuyên dụng dưới đây để luyện tập thêm nhé!

Tải xuống file bài tập tìm tập nghiệm của phương trình logarit

Ngoài ra, thầy Thành Đức Trung của trường VUIHOC cũng có bài giảng rất hay về phương trình mũ và logarit. Trong đó, thầy có chia sẻ các phương pháp, mẹo làm bài tập tìm tập nghiệm của phương trình logarit siêu nhanh và siêu thú vị. Các em cùng xem video bài giảng của thầy để học thêm những kỹ năng giải bài tập này nhé!

Các em đã cùng VUIHOC ôn tập lại lý thuyết về phương trình logarit cũng như 4 cách tìm tập nghiệm của phương trình logarit. Chúc các em đạt điểm cao!

Cách tìm tập hợp nghiệm của phương trình

Có bao nhiêu cách tìm tập nghiệm của phương trình Logarit? Giải các bài tập về phương trình Logarit như thế nào?... Đây là những câu hỏi phổ biến được các bạn học sinh THPT quan tâm, đặc biệt là các sĩ tử 2k4 ôn thi THPT Quốc gia. Bài viết dưới đây của VUIHOC sẽ giúp các bạn trả lời những câu hỏi đó.

Cách tìm tập hợp nghiệm của phương trình

1. Ôn lại lý thuyết phương trình Logarit

1.1. Công thức Logarit cần nhớ

Cho 2 số dương $a, b$ với $a\neq 1$. Số $a$ thỏa mãn đẳng thức $a^{\alpha }=b$ thì được gọi là Logarit cơ số $a$ của $b$

Ký hiệu là $a^{a}=b$

Như vậy: $a^{\alpha }=b\Leftrightarrow \alpha =log_{a}b$

Lưu ý: Không tồn tại Logarit của số âm và số 0

Với 2 số dương $a,b (a\neq 1)$  ta có các tính chất sau: $log_{a}a=1; log_{a}1=0$

Các công thức cần nhớ:

Công thức 1: 

$log_{a}a^{x}=x; \forall x\in R; 1\neq a>0$

Công thức 2

$log_{a}x+log_{a}y=log_{a}(xy)$, với $x,y,a > 0, a\neq 1$

Tương tự, $log_{a}x- log_{a}y=log_{a}\frac{x}{y}$ với $a,x,y > 0$ và $ a\neq 1$
Chú ý: Với $a,y < 0$ và $0 < a\neq 1$ ta có: $log_{a}(xy)= log_{a}(-x)+log_{a}(-y)$

Công thức 3

$log_{a}b^{n}=n.log_{a}b; log_{a^{n}}b=\frac{1}{n}log_{a}b (a,b>0; a\neq 1)$

Như vậy: $log_{a^{m}}b^{n}=\frac{n}{m}log_{a}b$

Công thức 4 (Đổi cơ số)

$log_{b}c=\frac{log_{a}c}{log_{a}b}$

Các cách viết khác của công thức đổi cơ số: $log_{a}b.log_{b}c=log_{a}c$ với
$a,b,c > 0, a,b \neq 1$

Công thức này có hệ quả là: Khi cho ra $a=c$, ta có: $log_{c}b.log_{b}c= log_{c}c=1\Leftrightarrow log_{c}b=\frac{1}{log_{b}c}$ 

(gọi là nghịch đảo).

Tương tự: $log_{x_{1}}x_{2}...log_{x_{n-1}}x_{n}= log_{x_{1}}x_{n}$ (Với $1\neq x_{1};...x_{n} > 0$)

$a^{log_{b}c}=c^{log_{b}a}$ (Với $a;b;c > 0; b\neq 1$)

1.2. Định nghĩa phương trình Logarit

- Định nghĩa: Là phương trình có dạng $log_{a}f(x)= log_{a}g(x)$, trong đó $f(x)$ và $g(x)$ là các hàm số chứa ẩn $x$ cần giải. 

- Cách giải tổng quát:

Đặt điều kiện cho phương trình có nghĩa: $\left\{\begin{matrix}a > 0; a\neq 1 &  & \\ f(x) > 0 &  & \\ g(x) > 0 &  & \end{matrix}\right.$

Biến đổi phương trình về dạng sau: $\left\{\begin{matrix}f(x) = g(x)&  & \\ a=1 &  & \end{matrix}\right.$

Lưu ý:

+ Với dạng phương trình $log_{a}f(x)=b\Leftrightarrow f(x)=a^{b}$

+ Đẩy lũy thừa bậc chẵn: $log_{a}x^{2n}=2nlog_{a}\left | x \right |$ nếu $x > 0$ thì $nlog_{a}x=log_{a}x^{n}$

+ Với phương trình sau khi biến đổi được về dạng:

$\sqrt{f(x)}=g(x)\Leftrightarrow \left\{\begin{matrix}g(x) \geqslant 0&  & \\ f(x)=[g(x)]^{2} &  & \end{matrix}\right.$

2. Các cách tìm tập nghiệm của phương trình logarit

Có 4 phương pháp phổ biến để giải cũng như tìm tập nghiệm của phương trình logarit:

Phương pháp Công thức
Đưa về cùng cơ số $log_{a}f(x)=log_{a}g(x)\Leftrightarrow f(x)=g(x)$
$log_{a}f(x)=b\Leftrightarrow f(x)=ab$
Đặt ẩn phụ Phương trình dạng: $Q[log_{a}f(x)]=0$
$\rightarrow$ Đặt $t=log_{a}x (t\in R)$
Mũ hóa

Phương trình $log_{a}f (x)= log_{b}g(x) (a>0, a\neq 1)$ Ta đặt $log_{a}f (x)= log_{b}g(x)= t\Rightarrow \left\{\begin{matrix}

f(x)= a^{t} &  & \\ g(x)= b^{t}&  & \end{matrix}\right.$

$\rightarrow$ Đưa phương trình về dạng phương trình ẩn $t$

Đánh giá hàm số

Hàm số y=f(x)  đồng biến hoặc (nghích biển) trên R thì phương trình $f(x)= f(x_{0})\Leftrightarrow x=x_{0}$

Hàm số $f(t)$ đồng biến hoặc (nghịch biến) trên $D$ thì với $u,v\in D$ ta có $f(u)= f(v)\Leftrightarrow u=v$

($D$ là một khoảng, một đoạn hoặc nửa đoạn)

3. Bài tập áp dụng

Các bạn có thể tham khảo thêm dạng bài tập tại đây có đáp án chi tiết: Bài tập phương trình Logarit

Sau khi đọc xong bài viết này, các bạn nhớ hãy luyện tập các bài tập áp dụng thường xuyên để thực hành thành thạo các cách tìm tập nghiệm của phương trình logarit nhé. Chúc các bạn học tốt!

Cách tìm tập hợp nghiệm của phương trình